File size: 3,833 Bytes
46ceb00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
---
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: abhinand/dr-llama-te-instruct-v0
model-index:
- name: dr-llama-te-instruct-v0-lora-ext
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.3.0`
```yaml
base_model: abhinand/dr-llama-te-instruct-v0
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true
is_llama_derived_model: true
# huggingface repo
datasets:
- path: abhinand/telugu_llama_instruct
name: regional_sharegpt_gs8
type: sharegpt.load_role
conversation: chatml
train_on_split: train
- path: abhinand/detox-dpo-te
name: sharegpt_gs8
type: sharegpt.load_role
conversation: chatml
train_on_split: train
load_in_4bit: false
load_in_8bit: false
bf16: true # require >=ampere
chat_template: chatml
dataset_prepared_path: last_run_prepared_path
hub_model_id: abhinand/dr-llama-te-instruct-v0-lora-ext
group_by_length: false
val_set_size: 0.0
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 64
lora_alpha: 128
lora_target_modules:
- q_proj
- v_proj
- k_proj
- o_proj
- gate_proj
- down_proj
- up_proj
lora_modules_to_save:
- embed_tokens
- lm_head
lora_dropout: 0.1
lora_target_linear: true
lora_fan_in_fan_out:
output_dir: /home/dev/axolotl/saved_models/telugu-instruct-extended
gradient_accumulation_steps: 8
micro_batch_size: 4
eval_batch_size: 4
num_epochs: 1
logging_steps: 1
save_steps: 10
save_total_limit: 3
save_safetensors: false
gradient_checkpointing: true
lr_scheduler: cosine
optimizer: "adamw_bnb_8bit"
adam_beta2: 0.95
adam_epsilon: 0.00001
weight_decay: 0.1
learning_rate: 0.0005
max_grad_norm: 1.0
warmup_ratio: 0.05
# warmup_steps: 10
flash_attention: true
# Resume from a specific checkpoint dir
resume_from_checkpoint:
# If resume_from_checkpoint isn't set and you simply want it to start where it left off.
# Be careful with this being turned on between different models.
# auto_resume_from_checkpoints: true
# wandb configuration if you're using it
# Make sure your `WANDB_API_KEY` environment variable is set (recommended) or you login to wandb with `wandb login`.
wandb_mode: # "offline" to save run metadata locally and not sync to the server, "disabled" to turn off wandb
wandb_project: "telugu-llama-sft"
wandb_name:
wandb_run_id:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
tokens: # these are delimiters
- "<|im_start|>"
- "<|im_end|>"
```
</details><br>
# dr-llama-te-instruct-v0-lora-ext
This model is a fine-tuned version of [abhinand/dr-llama-te-instruct-v0](https://huggingface.co/abhinand/dr-llama-te-instruct-v0) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 3
- num_epochs: 1
### Training results
### Framework versions
- PEFT 0.7.0
- Transformers 4.37.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.16.1
- Tokenizers 0.15.0 |