metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-fl102
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
model-index:
- name: mal-mms
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_17_0
type: common_voice_17_0
config: ml
split: test
args: ml
metrics:
- name: Wer
type: wer
value: 0.5393294648613798
mal-mms
This model is a fine-tuned version of facebook/mms-1b-fl102 on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3051
- Wer: 0.5393
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 25
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
8.748 | 1.5625 | 100 | 0.4114 | 0.6370 |
0.4627 | 3.125 | 200 | 0.3346 | 0.6006 |
0.3883 | 4.6875 | 300 | 0.3143 | 0.5725 |
0.3596 | 6.25 | 400 | 0.3133 | 0.5709 |
0.3294 | 7.8125 | 500 | 0.3069 | 0.5603 |
0.3078 | 9.375 | 600 | 0.3073 | 0.5516 |
0.2881 | 10.9375 | 700 | 0.3110 | 0.5522 |
0.2755 | 12.5 | 800 | 0.3041 | 0.5519 |
0.2627 | 14.0625 | 900 | 0.3163 | 0.5467 |
0.245 | 15.625 | 1000 | 0.3009 | 0.5432 |
0.2303 | 17.1875 | 1100 | 0.3074 | 0.5374 |
0.2233 | 18.75 | 1200 | 0.3123 | 0.5413 |
0.2142 | 20.3125 | 1300 | 0.3123 | 0.5397 |
0.2125 | 21.875 | 1400 | 0.3088 | 0.5403 |
0.2025 | 23.4375 | 1500 | 0.3055 | 0.5416 |
0.2072 | 25.0 | 1600 | 0.3051 | 0.5393 |
Framework versions
- Transformers 4.46.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1