mal-mms

This model is a fine-tuned version of facebook/mms-1b-fl102 on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3051
  • Wer: 0.5393

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 25
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
8.748 1.5625 100 0.4114 0.6370
0.4627 3.125 200 0.3346 0.6006
0.3883 4.6875 300 0.3143 0.5725
0.3596 6.25 400 0.3133 0.5709
0.3294 7.8125 500 0.3069 0.5603
0.3078 9.375 600 0.3073 0.5516
0.2881 10.9375 700 0.3110 0.5522
0.2755 12.5 800 0.3041 0.5519
0.2627 14.0625 900 0.3163 0.5467
0.245 15.625 1000 0.3009 0.5432
0.2303 17.1875 1100 0.3074 0.5374
0.2233 18.75 1200 0.3123 0.5413
0.2142 20.3125 1300 0.3123 0.5397
0.2125 21.875 1400 0.3088 0.5403
0.2025 23.4375 1500 0.3055 0.5416
0.2072 25.0 1600 0.3051 0.5393

Framework versions

  • Transformers 4.46.0.dev0
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
4
Safetensors
Model size
965M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for abatpool/mal-mms

Finetuned
(7)
this model

Evaluation results