|
# Indic Language Bloom Model Training |
|
|
|
This repository contains the code and resources for fine-tuning the Huggingface Bloom model on the Indic language dataset using Low-Rank Adaptation (LoRA). The goal is to create a high-performance language model specifically tailored to Indic languages. |
|
|
|
## Dataset |
|
|
|
The dataset used for training is provided by AI4Bharat. I have uploaded it to huggingface hub at: |
|
|
|
- [Processed Indic Language Corpus](https://huggingface.co/datasets/aashay96/indic_language_corpus/tree/main) |
|
|
|
## Progress |
|
|
|
### Completed |
|
|
|
- [x] Low-Rank Adaptation fine-tuning of the Bloom model on streaming data |
|
- [x] Single checkpoint available (training logs at [Weights & Biases](https://wandb.ai/indic-lm/huggingface/runs/7kq2m62v/)) |
|
|
|
### To Do |
|
|
|
- [ ] Benchmark current multilingual LLMs on IndicGLUE using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) |
|
- [ ] Integrate DeepSpeed for better resource utilization |
|
- [ ] Convert current instruction dataset to Indic languages and train (dolly v2 dataset, distilled from GPT, etc.) |
|
- [ ] Model doesn't stop producing text - how to fix? |
|
- [ ] Deploy RLHF community app using [Cheese](https://github.com/CarperAI/cheese) |
|
|
|
## Using the Model |
|
|
|
|
|
```bash |
|
import torch |
|
from peft import PeftModel, PeftConfig |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
peft_model_id = "aashay96/indic-BloomLM" |
|
config = PeftConfig.from_pretrained(peft_model_id) |
|
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto') |
|
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) |
|
|
|
# Load the Lora model |
|
model = PeftModel.from_pretrained(model, peft_model_id) |
|
|
|
|
|
|
|
batch = tokenizer("आप कैसे हैं", return_tensors='pt') |
|
|
|
with torch.cuda.amp.autocast(): |
|
output_tokens = model.generate(**batch, max_new_tokens=10) |
|
|
|
print('\n\n', tokenizer.decode(output_tokens[0], skip_special_tokens=True)) |
|
|