File size: 1,975 Bytes
55d0815
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# Indic Language Bloom Model Training

This repository contains the code and resources for fine-tuning the Huggingface Bloom model on the Indic language dataset using Low-Rank Adaptation (LoRA). The goal is to create a high-performance language model specifically tailored to Indic languages.

## Dataset

The dataset used for training is provided by AI4Bharat. I have uploaded it to huggingface hub at:

- [Processed Indic Language Corpus](https://huggingface.co/datasets/aashay96/indic_language_corpus/tree/main)

## Progress

### Completed

- [x] Low-Rank Adaptation fine-tuning of the Bloom model on streaming data
- [x] Single checkpoint available (training logs at [Weights & Biases](https://wandb.ai/indic-lm/huggingface/runs/7kq2m62v/))

### To Do

- [ ] Benchmark current multilingual LLMs on IndicGLUE using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness)
- [ ] Integrate DeepSpeed for better resource utilization
- [ ] Convert current instruction dataset to Indic languages and train (dolly v2 dataset, distilled from GPT, etc.)
- [ ] Model doesn't stop producing text - how to fix?
- [ ] Deploy RLHF community app using [Cheese](https://github.com/CarperAI/cheese)

## Using the Model 


```bash
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer

peft_model_id = "aashay96/indic-BloomLM"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)

# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)



batch = tokenizer("आप कैसे हैं", return_tensors='pt')

with torch.cuda.amp.autocast():
  output_tokens = model.generate(**batch, max_new_tokens=10)

print('\n\n', tokenizer.decode(output_tokens[0], skip_special_tokens=True))