File size: 1,975 Bytes
55d0815 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
# Indic Language Bloom Model Training
This repository contains the code and resources for fine-tuning the Huggingface Bloom model on the Indic language dataset using Low-Rank Adaptation (LoRA). The goal is to create a high-performance language model specifically tailored to Indic languages.
## Dataset
The dataset used for training is provided by AI4Bharat. I have uploaded it to huggingface hub at:
- [Processed Indic Language Corpus](https://huggingface.co/datasets/aashay96/indic_language_corpus/tree/main)
## Progress
### Completed
- [x] Low-Rank Adaptation fine-tuning of the Bloom model on streaming data
- [x] Single checkpoint available (training logs at [Weights & Biases](https://wandb.ai/indic-lm/huggingface/runs/7kq2m62v/))
### To Do
- [ ] Benchmark current multilingual LLMs on IndicGLUE using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness)
- [ ] Integrate DeepSpeed for better resource utilization
- [ ] Convert current instruction dataset to Indic languages and train (dolly v2 dataset, distilled from GPT, etc.)
- [ ] Model doesn't stop producing text - how to fix?
- [ ] Deploy RLHF community app using [Cheese](https://github.com/CarperAI/cheese)
## Using the Model
```bash
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
peft_model_id = "aashay96/indic-BloomLM"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)
batch = tokenizer("आप कैसे हैं", return_tensors='pt')
with torch.cuda.amp.autocast():
output_tokens = model.generate(**batch, max_new_tokens=10)
print('\n\n', tokenizer.decode(output_tokens[0], skip_special_tokens=True))
|