|
--- |
|
{} |
|
|
|
--- |
|
|
|
## Example Usage |
|
|
|
This section demonstrates how to use the `XiaoZhang98/byT5-DRS` model with the Hugging Face Transformers library to process an example sentence. |
|
|
|
```python |
|
from transformers import AutoTokenizer, T5ForConditionalGeneration |
|
|
|
# Initialize the tokenizer and model |
|
tokenizer = AutoTokenizer.from_pretrained('XiaoZhang98/byT5-DRS', max_length=512) |
|
model = T5ForConditionalGeneration.from_pretrained("XiaoZhang98/byT5-DRS") |
|
|
|
# Example sentence |
|
example = "I am a student." |
|
|
|
# Tokenize and prepare the input |
|
x = tokenizer(example, return_tensors='pt', padding=True, truncation=True, max_length=512)['input_ids'] |
|
|
|
# Generate output |
|
output = model.generate(x) |
|
|
|
# Decode and print the output text |
|
pred_text = tokenizer.decode(output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) |
|
print(pred_text) |
|
|