Example Usage
This section demonstrates how to use the XiaoZhang98/byT5-DRS
model with the Hugging Face Transformers library to process an example sentence.
from transformers import AutoTokenizer, T5ForConditionalGeneration
# Initialize the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained('XiaoZhang98/byT5-DRS', max_length=512)
model = T5ForConditionalGeneration.from_pretrained("XiaoZhang98/byT5-DRS")
# Example sentence
example = "I am a student."
# Tokenize and prepare the input
x = tokenizer(example, return_tensors='pt', padding=True, truncation=True, max_length=512)['input_ids']
# Generate output
output = model.generate(x)
# Decode and print the output text
pred_text = tokenizer.decode(output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
print(pred_text)
- Downloads last month
- 49
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.