metadata
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: roberta-base-NER
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
config: PAN-X.en
split: validation
args: PAN-X.en
metrics:
- name: Precision
type: precision
value: 0.8003614625330182
- name: Recall
type: recall
value: 0.8110735418427726
- name: F1
type: f1
value: 0.8056818976978517
- name: Accuracy
type: accuracy
value: 0.9194332683336213
roberta-base-NER
This model is a fine-tuned version of xlm-roberta-base on the xtreme dataset. It achieves the following results on the evaluation set:
- Loss: 0.2935
- Precision: 0.8004
- Recall: 0.8111
- F1: 0.8057
- Accuracy: 0.9194
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 417 | 0.3359 | 0.7286 | 0.7675 | 0.7476 | 0.8991 |
0.4227 | 2.0 | 834 | 0.2951 | 0.7711 | 0.7980 | 0.7843 | 0.9131 |
0.2818 | 3.0 | 1251 | 0.2824 | 0.7852 | 0.8076 | 0.7962 | 0.9174 |
0.2186 | 4.0 | 1668 | 0.2853 | 0.7934 | 0.8150 | 0.8041 | 0.9193 |
0.1801 | 5.0 | 2085 | 0.2935 | 0.8004 | 0.8111 | 0.8057 | 0.9194 |
Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3