--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - xtreme metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-base-NER results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.en split: validation args: PAN-X.en metrics: - name: Precision type: precision value: 0.8003614625330182 - name: Recall type: recall value: 0.8110735418427726 - name: F1 type: f1 value: 0.8056818976978517 - name: Accuracy type: accuracy value: 0.9194332683336213 --- # roberta-base-NER This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2935 - Precision: 0.8004 - Recall: 0.8111 - F1: 0.8057 - Accuracy: 0.9194 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 417 | 0.3359 | 0.7286 | 0.7675 | 0.7476 | 0.8991 | | 0.4227 | 2.0 | 834 | 0.2951 | 0.7711 | 0.7980 | 0.7843 | 0.9131 | | 0.2818 | 3.0 | 1251 | 0.2824 | 0.7852 | 0.8076 | 0.7962 | 0.9174 | | 0.2186 | 4.0 | 1668 | 0.2853 | 0.7934 | 0.8150 | 0.8041 | 0.9193 | | 0.1801 | 5.0 | 2085 | 0.2935 | 0.8004 | 0.8111 | 0.8057 | 0.9194 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3