metadata
license: apache-2.0
model-index:
- name: GALAXY-XB-v.03
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 61.77
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/GALAXY-XB-v.03
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 83.59
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/GALAXY-XB-v.03
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.55
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/GALAXY-XB-v.03
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 44.19
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/GALAXY-XB-v.03
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 81.06
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/GALAXY-XB-v.03
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 45.03
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/GALAXY-XB-v.03
name: Open LLM Leaderboard
TeeZee/GALAXY-XB-v.03
Experiment, can DUS be taken one or more steps further?
Technical notes:
- 12 layers removed from both models, 4 more than in original paper but its 1/4 of all layers(48) as per original paper.
- base version of upstage/SOLAR-10.7B-v1.0 used for merge
- no finetuning done yet, this is just a merge, first step in DUS paper
- next step, if evaluation proves that its at least as 'smart' as base model, should be finetuning to 'recover' after merge
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 63.37 |
AI2 Reasoning Challenge (25-Shot) | 61.77 |
HellaSwag (10-Shot) | 83.59 |
MMLU (5-Shot) | 64.55 |
TruthfulQA (0-shot) | 44.19 |
Winogrande (5-shot) | 81.06 |
GSM8k (5-shot) | 45.03 |
Results
- small quality loss can be observed comparing to base model, as described in the DUS paper
- this merge has best evaluation results, so it will be finetuned to 'recover' from the merge
- finetunig will be done on 5-10% of openorca dataset and full DPO datasets used by SOLAR
- v03 > v01 > v02 - based on average evaluation scores, removing 1/4 of total layers seems to be the correct way to scale DUS