--- license: apache-2.0 model-index: - name: GALAXY-XB-v.03 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 61.77 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/GALAXY-XB-v.03 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 83.59 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/GALAXY-XB-v.03 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.55 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/GALAXY-XB-v.03 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 44.19 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/GALAXY-XB-v.03 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 81.06 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/GALAXY-XB-v.03 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 45.03 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/GALAXY-XB-v.03 name: Open LLM Leaderboard --- ### TeeZee/GALAXY-XB-v.03 ### Experiment, can DUS be taken one or more steps further? ### Technical notes: - 12 layers removed from both models, 4 more than in original paper but its 1/4 of all layers(48) as per original paper. - base version of upstage/SOLAR-10.7B-v1.0 used for merge - no finetuning done yet, this is just a merge, first step in DUS paper - next step, if evaluation proves that its at least as 'smart' as base model, should be finetuning to 'recover' after merge # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TeeZee__GALAXY-XB-v.03) | Metric |Value| |---------------------------------|----:| |Avg. |63.37| |AI2 Reasoning Challenge (25-Shot)|61.77| |HellaSwag (10-Shot) |83.59| |MMLU (5-Shot) |64.55| |TruthfulQA (0-shot) |44.19| |Winogrande (5-shot) |81.06| |GSM8k (5-shot) |45.03| ### Results - small quality loss can be observed comparing to base model, as described in the DUS paper - this merge has best evaluation results, so it will be finetuned to 'recover' from the merge - finetunig will be done on 5-10% of openorca dataset and full DPO datasets used by SOLAR - v03 > v01 > v02 - based on average evaluation scores, removing 1/4 of total layers seems to be the correct way to scale DUS