metadata
base_model: BAAI/bge-base-en-v1.5
language:
- fr
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:47560
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Qui a écouté le roi Asa et envoyé son armée contre les villes d'Israël?
sentences:
- Ben-Hadad.
- Il se prosterna devant le roi, le visage contre terre.
- Baescha, fils d'Achija.
- source_sentence: >-
Quelle est l'importance de distribuer tous ses biens aux pauvres sans
charité?
sentences:
- Adina, fils de Schiza, était le chef des Rubénites.
- Distribuer tous ses biens aux pauvres sans charité ne sert à rien.
- L'Éternel.
- source_sentence: Qui sont les enfants du père d'Étham?
sentences:
- Jizreel, Jischma, Jidbasch et leur sœur Hatselelponi.
- Chaque division comptait vingt-quatre mille hommes.
- >-
Hosa était un fils de Merari et il avait quatre fils: Schimri, Hilkija,
Thebalia, et Zacharie.
- source_sentence: Combien de temps Nadab, fils de Jéroboam, a-t-il régné sur Israël?
sentences:
- >-
Ils sont des serviteurs par le moyen desquels les frères ont cru, selon
que le Seigneur l'a donné à chacun.
- >-
Sept fils: Jeusch, Benjamin, Éhud, Kenaana, Zéthan, Tarsis et
Achischachar, enregistrés au nombre de dix-sept mille deux cents.
- Deux ans.
- source_sentence: >-
Quand les Lévites devaient-ils se présenter pour louer et célébrer
l'Éternel?
sentences:
- Chaque matin et chaque soir.
- Cinq mille talents d'or et dix mille talents d'argent ont été donnés.
- Il doit demeurer circoncis.
model-index:
- name: BGE base bible test
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.13359388879019363
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.18795523183513946
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.21389234322259726
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.25102149582519095
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.13359388879019363
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.06265174394504648
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.04277846864451945
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0251021495825191
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.13359388879019363
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.18795523183513946
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.21389234322259726
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.25102149582519095
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.18816833747648484
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.16858798117458645
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.17400088915411802
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.12773139101083675
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.18546811156510926
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.20572037662106946
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.24213892343222598
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.12773139101083675
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.061822703855036416
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.041144075324213894
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0242138923432226
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.12773139101083675
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.18546811156510926
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.20572037662106946
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.24213892343222598
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.18151482198424093
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.1625760305898876
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.16802226648065993
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.12488896784508793
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.17463137324569195
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.19737075857168235
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.23272339669568307
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.12488896784508793
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.058210457748563975
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.03947415171433648
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.023272339669568307
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.12488896784508793
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.17463137324569195
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.19737075857168235
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.23272339669568307
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.17440736005896854
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.156282728049472
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.16141647615447188
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.10943329188132883
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.15686622845976195
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.17853970509859654
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.20838514833895896
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.10943329188132883
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.052288742819920644
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.03570794101971931
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0208385148338959
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.10943329188132883
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.15686622845976195
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.17853970509859654
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.20838514833895896
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.15566336146326976
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.13917031134121227
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.14405644027137798
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.08935867827322792
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.13181737431160065
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.15011547344110854
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.17694084206786284
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.08935867827322792
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.04393912477053354
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.03002309468822171
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.01769408420678629
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.08935867827322792
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.13181737431160065
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.15011547344110854
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.17694084206786284
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.13031373727839585
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.11575599150656894
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.12066444582998255
name: Cosine Map@100
BGE base bible test
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: fr
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Steve77/bge-base-bible-retrieval")
# Run inference
sentences = [
"Quand les Lévites devaient-ils se présenter pour louer et célébrer l'Éternel?",
'Chaque matin et chaque soir.',
"Cinq mille talents d'or et dix mille talents d'argent ont été donnés.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.1336 | 0.1277 | 0.1249 | 0.1094 | 0.0894 |
cosine_accuracy@3 | 0.188 | 0.1855 | 0.1746 | 0.1569 | 0.1318 |
cosine_accuracy@5 | 0.2139 | 0.2057 | 0.1974 | 0.1785 | 0.1501 |
cosine_accuracy@10 | 0.251 | 0.2421 | 0.2327 | 0.2084 | 0.1769 |
cosine_precision@1 | 0.1336 | 0.1277 | 0.1249 | 0.1094 | 0.0894 |
cosine_precision@3 | 0.0627 | 0.0618 | 0.0582 | 0.0523 | 0.0439 |
cosine_precision@5 | 0.0428 | 0.0411 | 0.0395 | 0.0357 | 0.03 |
cosine_precision@10 | 0.0251 | 0.0242 | 0.0233 | 0.0208 | 0.0177 |
cosine_recall@1 | 0.1336 | 0.1277 | 0.1249 | 0.1094 | 0.0894 |
cosine_recall@3 | 0.188 | 0.1855 | 0.1746 | 0.1569 | 0.1318 |
cosine_recall@5 | 0.2139 | 0.2057 | 0.1974 | 0.1785 | 0.1501 |
cosine_recall@10 | 0.251 | 0.2421 | 0.2327 | 0.2084 | 0.1769 |
cosine_ndcg@10 | 0.1882 | 0.1815 | 0.1744 | 0.1557 | 0.1303 |
cosine_mrr@10 | 0.1686 | 0.1626 | 0.1563 | 0.1392 | 0.1158 |
cosine_map@100 | 0.174 | 0.168 | 0.1614 | 0.1441 | 0.1207 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 47,560 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 8 tokens
- mean: 21.23 tokens
- max: 45 tokens
- min: 3 tokens
- mean: 25.14 tokens
- max: 110 tokens
- Samples:
anchor positive Quels sont les noms des fils de Schobal?
Aljan, Manahath, Ébal, Schephi et Onam
Quels sont les noms des fils de Tsibeon?
Ajja et Ana
Qui est le fils d'Ana?
Dischon
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 16per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.0538 | 10 | 12.8804 | - | - | - | - | - |
0.1076 | 20 | 12.4714 | - | - | - | - | - |
0.1615 | 30 | 11.8263 | - | - | - | - | - |
0.2153 | 40 | 11.014 | - | - | - | - | - |
0.2691 | 50 | 10.1609 | - | - | - | - | - |
0.3229 | 60 | 10.6807 | - | - | - | - | - |
0.3767 | 70 | 9.3215 | - | - | - | - | - |
0.4305 | 80 | 10.3719 | - | - | - | - | - |
0.4844 | 90 | 9.4147 | - | - | - | - | - |
0.5382 | 100 | 9.5567 | - | - | - | - | - |
0.5920 | 110 | 8.7699 | - | - | - | - | - |
0.6458 | 120 | 9.0428 | - | - | - | - | - |
0.6996 | 130 | 9.0977 | - | - | - | - | - |
0.7534 | 140 | 8.0843 | - | - | - | - | - |
0.8073 | 150 | 8.1363 | - | - | - | - | - |
0.8611 | 160 | 7.5306 | - | - | - | - | - |
0.9149 | 170 | 7.7972 | - | - | - | - | - |
0.9687 | 180 | 7.9644 | - | - | - | - | - |
0.9956 | 185 | - | 0.1917 | 0.1879 | 0.1784 | 0.1583 | 0.1268 |
1.0225 | 190 | 7.6124 | - | - | - | - | - |
1.0764 | 200 | 6.6315 | - | - | - | - | - |
1.1302 | 210 | 7.2313 | - | - | - | - | - |
1.1840 | 220 | 6.5394 | - | - | - | - | - |
1.2378 | 230 | 6.7843 | - | - | - | - | - |
1.2916 | 240 | 6.9276 | - | - | - | - | - |
1.3454 | 250 | 7.2281 | - | - | - | - | - |
1.3993 | 260 | 6.9158 | - | - | - | - | - |
1.4531 | 270 | 6.5158 | - | - | - | - | - |
1.5069 | 280 | 6.916 | - | - | - | - | - |
1.5607 | 290 | 6.5717 | - | - | - | - | - |
1.6145 | 300 | 6.9225 | - | - | - | - | - |
1.6683 | 310 | 7.3981 | - | - | - | - | - |
1.7222 | 320 | 6.894 | - | - | - | - | - |
1.7760 | 330 | 6.0293 | - | - | - | - | - |
1.8298 | 340 | 5.9389 | - | - | - | - | - |
1.8836 | 350 | 5.959 | - | - | - | - | - |
1.9374 | 360 | 6.4268 | - | - | - | - | - |
1.9913 | 370 | 6.7366 | - | - | - | - | - |
1.9966 | 371 | - | 0.2012 | 0.1965 | 0.1862 | 0.1633 | 0.1361 |
2.0451 | 380 | 5.7871 | - | - | - | - | - |
2.0989 | 390 | 5.7358 | - | - | - | - | - |
2.1527 | 400 | 6.0964 | - | - | - | - | - |
2.2065 | 410 | 5.8331 | - | - | - | - | - |
2.2603 | 420 | 5.6152 | - | - | - | - | - |
2.3142 | 430 | 6.5018 | - | - | - | - | - |
2.3680 | 440 | 5.9798 | - | - | - | - | - |
2.4218 | 450 | 6.0598 | - | - | - | - | - |
2.4756 | 460 | 5.8222 | - | - | - | - | - |
2.5294 | 470 | 6.303 | - | - | - | - | - |
2.5832 | 480 | 5.9648 | - | - | - | - | - |
2.6371 | 490 | 6.415 | - | - | - | - | - |
2.6909 | 500 | 7.084 | - | - | - | - | - |
2.7447 | 510 | 5.692 | - | - | - | - | - |
2.7985 | 520 | 5.7706 | - | - | - | - | - |
2.8523 | 530 | 5.6943 | - | - | - | - | - |
2.9062 | 540 | 5.6817 | - | - | - | - | - |
2.9600 | 550 | 6.1265 | - | - | - | - | - |
2.9869 | 555 | - | 0.1882 | 0.1815 | 0.1744 | 0.1557 | 0.1303 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.3.1
- Transformers: 4.45.2
- PyTorch: 2.5.1
- Accelerate: 1.2.1
- Datasets: 2.19.1
- Tokenizers: 0.20.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}