--- base_model: BAAI/bge-base-en-v1.5 language: - fr library_name: sentence-transformers license: apache-2.0 metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:47560 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss widget: - source_sentence: Qui a écouté le roi Asa et envoyé son armée contre les villes d'Israël? sentences: - Ben-Hadad. - Il se prosterna devant le roi, le visage contre terre. - Baescha, fils d'Achija. - source_sentence: Quelle est l'importance de distribuer tous ses biens aux pauvres sans charité? sentences: - Adina, fils de Schiza, était le chef des Rubénites. - Distribuer tous ses biens aux pauvres sans charité ne sert à rien. - L'Éternel. - source_sentence: Qui sont les enfants du père d'Étham? sentences: - Jizreel, Jischma, Jidbasch et leur sœur Hatselelponi. - Chaque division comptait vingt-quatre mille hommes. - 'Hosa était un fils de Merari et il avait quatre fils: Schimri, Hilkija, Thebalia, et Zacharie.' - source_sentence: Combien de temps Nadab, fils de Jéroboam, a-t-il régné sur Israël? sentences: - Ils sont des serviteurs par le moyen desquels les frères ont cru, selon que le Seigneur l'a donné à chacun. - 'Sept fils: Jeusch, Benjamin, Éhud, Kenaana, Zéthan, Tarsis et Achischachar, enregistrés au nombre de dix-sept mille deux cents.' - Deux ans. - source_sentence: Quand les Lévites devaient-ils se présenter pour louer et célébrer l'Éternel? sentences: - Chaque matin et chaque soir. - Cinq mille talents d'or et dix mille talents d'argent ont été donnés. - Il doit demeurer circoncis. model-index: - name: BGE base bible test results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.13359388879019363 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.18795523183513946 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.21389234322259726 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.25102149582519095 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.13359388879019363 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.06265174394504648 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.04277846864451945 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.0251021495825191 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.13359388879019363 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.18795523183513946 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.21389234322259726 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.25102149582519095 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.18816833747648484 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.16858798117458645 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.17400088915411802 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.12773139101083675 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.18546811156510926 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.20572037662106946 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.24213892343222598 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.12773139101083675 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.061822703855036416 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.041144075324213894 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.0242138923432226 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.12773139101083675 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.18546811156510926 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.20572037662106946 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.24213892343222598 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.18151482198424093 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.1625760305898876 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.16802226648065993 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.12488896784508793 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.17463137324569195 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.19737075857168235 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.23272339669568307 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.12488896784508793 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.058210457748563975 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.03947415171433648 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.023272339669568307 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.12488896784508793 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.17463137324569195 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.19737075857168235 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.23272339669568307 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.17440736005896854 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.156282728049472 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.16141647615447188 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.10943329188132883 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.15686622845976195 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.17853970509859654 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.20838514833895896 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.10943329188132883 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.052288742819920644 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.03570794101971931 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.0208385148338959 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.10943329188132883 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.15686622845976195 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.17853970509859654 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.20838514833895896 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.15566336146326976 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.13917031134121227 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.14405644027137798 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.08935867827322792 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.13181737431160065 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.15011547344110854 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.17694084206786284 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.08935867827322792 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.04393912477053354 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.03002309468822171 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.01769408420678629 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.08935867827322792 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.13181737431160065 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.15011547344110854 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.17694084206786284 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.13031373727839585 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.11575599150656894 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.12066444582998255 name: Cosine Map@100 --- # BGE base bible test This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json - **Language:** fr - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Steve77/bge-base-bible-retrieval") # Run inference sentences = [ "Quand les Lévites devaient-ils se présenter pour louer et célébrer l'Éternel?", 'Chaque matin et chaque soir.', "Cinq mille talents d'or et dix mille talents d'argent ont été donnés.", ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 | |:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------| | cosine_accuracy@1 | 0.1336 | 0.1277 | 0.1249 | 0.1094 | 0.0894 | | cosine_accuracy@3 | 0.188 | 0.1855 | 0.1746 | 0.1569 | 0.1318 | | cosine_accuracy@5 | 0.2139 | 0.2057 | 0.1974 | 0.1785 | 0.1501 | | cosine_accuracy@10 | 0.251 | 0.2421 | 0.2327 | 0.2084 | 0.1769 | | cosine_precision@1 | 0.1336 | 0.1277 | 0.1249 | 0.1094 | 0.0894 | | cosine_precision@3 | 0.0627 | 0.0618 | 0.0582 | 0.0523 | 0.0439 | | cosine_precision@5 | 0.0428 | 0.0411 | 0.0395 | 0.0357 | 0.03 | | cosine_precision@10 | 0.0251 | 0.0242 | 0.0233 | 0.0208 | 0.0177 | | cosine_recall@1 | 0.1336 | 0.1277 | 0.1249 | 0.1094 | 0.0894 | | cosine_recall@3 | 0.188 | 0.1855 | 0.1746 | 0.1569 | 0.1318 | | cosine_recall@5 | 0.2139 | 0.2057 | 0.1974 | 0.1785 | 0.1501 | | cosine_recall@10 | 0.251 | 0.2421 | 0.2327 | 0.2084 | 0.1769 | | **cosine_ndcg@10** | **0.1882** | **0.1815** | **0.1744** | **0.1557** | **0.1303** | | cosine_mrr@10 | 0.1686 | 0.1626 | 0.1563 | 0.1392 | 0.1158 | | cosine_map@100 | 0.174 | 0.168 | 0.1614 | 0.1441 | 0.1207 | ## Training Details ### Training Dataset #### json * Dataset: json * Size: 47,560 training samples * Columns: anchor and positive * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | anchor | positive | |:------------------------------------------------------|:----------------------------------------------------| | Quels sont les noms des fils de Schobal? | Aljan, Manahath, Ébal, Schephi et Onam | | Quels sont les noms des fils de Tsibeon? | Ajja et Ana | | Qui est le fils d'Ana? | Dischon | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `bf16`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 3 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 | |:----------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:| | 0.0538 | 10 | 12.8804 | - | - | - | - | - | | 0.1076 | 20 | 12.4714 | - | - | - | - | - | | 0.1615 | 30 | 11.8263 | - | - | - | - | - | | 0.2153 | 40 | 11.014 | - | - | - | - | - | | 0.2691 | 50 | 10.1609 | - | - | - | - | - | | 0.3229 | 60 | 10.6807 | - | - | - | - | - | | 0.3767 | 70 | 9.3215 | - | - | - | - | - | | 0.4305 | 80 | 10.3719 | - | - | - | - | - | | 0.4844 | 90 | 9.4147 | - | - | - | - | - | | 0.5382 | 100 | 9.5567 | - | - | - | - | - | | 0.5920 | 110 | 8.7699 | - | - | - | - | - | | 0.6458 | 120 | 9.0428 | - | - | - | - | - | | 0.6996 | 130 | 9.0977 | - | - | - | - | - | | 0.7534 | 140 | 8.0843 | - | - | - | - | - | | 0.8073 | 150 | 8.1363 | - | - | - | - | - | | 0.8611 | 160 | 7.5306 | - | - | - | - | - | | 0.9149 | 170 | 7.7972 | - | - | - | - | - | | 0.9687 | 180 | 7.9644 | - | - | - | - | - | | 0.9956 | 185 | - | 0.1917 | 0.1879 | 0.1784 | 0.1583 | 0.1268 | | 1.0225 | 190 | 7.6124 | - | - | - | - | - | | 1.0764 | 200 | 6.6315 | - | - | - | - | - | | 1.1302 | 210 | 7.2313 | - | - | - | - | - | | 1.1840 | 220 | 6.5394 | - | - | - | - | - | | 1.2378 | 230 | 6.7843 | - | - | - | - | - | | 1.2916 | 240 | 6.9276 | - | - | - | - | - | | 1.3454 | 250 | 7.2281 | - | - | - | - | - | | 1.3993 | 260 | 6.9158 | - | - | - | - | - | | 1.4531 | 270 | 6.5158 | - | - | - | - | - | | 1.5069 | 280 | 6.916 | - | - | - | - | - | | 1.5607 | 290 | 6.5717 | - | - | - | - | - | | 1.6145 | 300 | 6.9225 | - | - | - | - | - | | 1.6683 | 310 | 7.3981 | - | - | - | - | - | | 1.7222 | 320 | 6.894 | - | - | - | - | - | | 1.7760 | 330 | 6.0293 | - | - | - | - | - | | 1.8298 | 340 | 5.9389 | - | - | - | - | - | | 1.8836 | 350 | 5.959 | - | - | - | - | - | | 1.9374 | 360 | 6.4268 | - | - | - | - | - | | 1.9913 | 370 | 6.7366 | - | - | - | - | - | | **1.9966** | **371** | **-** | **0.2012** | **0.1965** | **0.1862** | **0.1633** | **0.1361** | | 2.0451 | 380 | 5.7871 | - | - | - | - | - | | 2.0989 | 390 | 5.7358 | - | - | - | - | - | | 2.1527 | 400 | 6.0964 | - | - | - | - | - | | 2.2065 | 410 | 5.8331 | - | - | - | - | - | | 2.2603 | 420 | 5.6152 | - | - | - | - | - | | 2.3142 | 430 | 6.5018 | - | - | - | - | - | | 2.3680 | 440 | 5.9798 | - | - | - | - | - | | 2.4218 | 450 | 6.0598 | - | - | - | - | - | | 2.4756 | 460 | 5.8222 | - | - | - | - | - | | 2.5294 | 470 | 6.303 | - | - | - | - | - | | 2.5832 | 480 | 5.9648 | - | - | - | - | - | | 2.6371 | 490 | 6.415 | - | - | - | - | - | | 2.6909 | 500 | 7.084 | - | - | - | - | - | | 2.7447 | 510 | 5.692 | - | - | - | - | - | | 2.7985 | 520 | 5.7706 | - | - | - | - | - | | 2.8523 | 530 | 5.6943 | - | - | - | - | - | | 2.9062 | 540 | 5.6817 | - | - | - | - | - | | 2.9600 | 550 | 6.1265 | - | - | - | - | - | | 2.9869 | 555 | - | 0.1882 | 0.1815 | 0.1744 | 0.1557 | 0.1303 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 3.3.1 - Transformers: 4.45.2 - PyTorch: 2.5.1 - Accelerate: 1.2.1 - Datasets: 2.19.1 - Tokenizers: 0.20.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```