bert-finetuned-ner / README.md
Skier8402's picture
Update README.md
4210c2b verified
metadata
license: apache-2.0
base_model: bert-base-cased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-finetuned-ner
    results: []
datasets:
  - conll2003
language:
  - en
library_name: transformers

bert-finetuned-ner

This model is a fine-tuned version of bert-base-cased on the CoNLL-2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0597
  • Precision: 0.9322
  • Recall: 0.9482
  • F1: 0.9401
  • Accuracy: 0.9863

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0793 1.0 1756 0.0771 0.9107 0.9342 0.9223 0.9805
0.0384 2.0 3512 0.0583 0.9301 0.9455 0.9377 0.9858
0.0255 3.0 5268 0.0597 0.9322 0.9482 0.9401 0.9863

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0