File size: 1,819 Bytes
b1d6a87
 
 
 
 
 
 
 
 
 
 
 
 
8ebf2cf
 
 
 
 
b1d6a87
 
 
 
 
 
 
4210c2b
b1d6a87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ebf2cf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
  results: []
datasets:
- conll2003
language:
- en
library_name: transformers
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-finetuned-ner

This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the [CoNLL-2003](https://huggingface.co/datasets/conll2003) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0597
- Precision: 0.9322
- Recall: 0.9482
- F1: 0.9401
- Accuracy: 0.9863

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0793        | 1.0   | 1756 | 0.0771          | 0.9107    | 0.9342 | 0.9223 | 0.9805   |
| 0.0384        | 2.0   | 3512 | 0.0583          | 0.9301    | 0.9455 | 0.9377 | 0.9858   |
| 0.0255        | 3.0   | 5268 | 0.0597          | 0.9322    | 0.9482 | 0.9401 | 0.9863   |


### Framework versions

- Transformers 4.37.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0