File size: 5,847 Bytes
c30f396 0546022 c30f396 3181d09 c30f396 0546022 3181d09 5eda242 7547faf c30f396 fad9815 c30f396 3181d09 5eda242 3181d09 c30f396 0546022 c30f396 0546022 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
---
license: apache-2.0
base_model: distilbert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: DIALOGUE_one
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# DIALOGUE_one
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2052
- Precision: 0.9762
- Recall: 0.9737
- F1: 0.9736
- Accuracy: 0.9737
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 1.2045 | 0.62 | 30 | 0.7843 | 0.9565 | 0.9474 | 0.9468 | 0.9474 |
| 0.5845 | 1.25 | 60 | 0.2507 | 0.9524 | 0.9474 | 0.9472 | 0.9474 |
| 0.23 | 1.88 | 90 | 0.1376 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0722 | 2.5 | 120 | 0.0647 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0515 | 3.12 | 150 | 0.1376 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0197 | 3.75 | 180 | 0.1505 | 0.9637 | 0.9605 | 0.9604 | 0.9605 |
| 0.0065 | 4.38 | 210 | 0.1456 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0046 | 5.0 | 240 | 0.1376 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0037 | 5.62 | 270 | 0.1569 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0028 | 6.25 | 300 | 0.1551 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0024 | 6.88 | 330 | 0.1594 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0022 | 7.5 | 360 | 0.1624 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0018 | 8.12 | 390 | 0.1687 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0016 | 8.75 | 420 | 0.1698 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0014 | 9.38 | 450 | 0.1732 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0013 | 10.0 | 480 | 0.1741 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0012 | 10.62 | 510 | 0.1772 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0011 | 11.25 | 540 | 0.1791 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.001 | 11.88 | 570 | 0.1814 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.001 | 12.5 | 600 | 0.1840 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0008 | 13.12 | 630 | 0.1858 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0009 | 13.75 | 660 | 0.1877 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0008 | 14.38 | 690 | 0.1893 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0007 | 15.0 | 720 | 0.1902 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0007 | 15.62 | 750 | 0.1908 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0007 | 16.25 | 780 | 0.1931 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0006 | 16.88 | 810 | 0.1936 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0006 | 17.5 | 840 | 0.1946 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0006 | 18.12 | 870 | 0.1961 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0006 | 18.75 | 900 | 0.1966 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0005 | 19.38 | 930 | 0.1965 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0005 | 20.0 | 960 | 0.1968 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0005 | 20.62 | 990 | 0.1974 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0005 | 21.25 | 1020 | 0.1987 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0005 | 21.88 | 1050 | 0.1995 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0005 | 22.5 | 1080 | 0.2001 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0005 | 23.12 | 1110 | 0.2010 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0004 | 23.75 | 1140 | 0.2018 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0004 | 24.38 | 1170 | 0.2021 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0004 | 25.0 | 1200 | 0.2025 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0004 | 25.62 | 1230 | 0.2034 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0004 | 26.25 | 1260 | 0.2038 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0004 | 26.88 | 1290 | 0.2042 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0004 | 27.5 | 1320 | 0.2047 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0004 | 28.12 | 1350 | 0.2048 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0004 | 28.75 | 1380 | 0.2050 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0004 | 29.38 | 1410 | 0.2051 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.0004 | 30.0 | 1440 | 0.2052 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
### Framework versions
- Transformers 4.37.1
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
|