SharonTudi
commited on
End of training
Browse files- README.md +54 -54
- config.json +1 -1
- model.safetensors +1 -1
- runs/Jan22_11-29-54_e51572f30c70/events.out.tfevents.1705923042.e51572f30c70.565.0 +3 -0
- training_args.bin +1 -1
README.md
CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
20 |
|
21 |
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss:
|
24 |
-
- Precision: 0.
|
25 |
-
- Recall: 0.
|
26 |
-
- F1: 0.
|
27 |
-
- Accuracy: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -55,59 +55,59 @@ The following hyperparameters were used during training:
|
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
-
| 1.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
|
107 |
|
108 |
### Framework versions
|
109 |
|
110 |
-
- Transformers 4.
|
111 |
- Pytorch 2.1.0+cu121
|
112 |
- Datasets 2.16.1
|
113 |
- Tokenizers 0.15.0
|
|
|
20 |
|
21 |
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.1156
|
24 |
+
- Precision: 0.9762
|
25 |
+
- Recall: 0.9737
|
26 |
+
- F1: 0.9736
|
27 |
+
- Accuracy: 0.9737
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| 1.1326 | 0.62 | 30 | 0.6327 | 0.9875 | 0.9868 | 0.9868 | 0.9868 |
|
59 |
+
| 0.4421 | 1.25 | 60 | 0.1854 | 0.9637 | 0.9605 | 0.9604 | 0.9605 |
|
60 |
+
| 0.1449 | 1.88 | 90 | 0.0766 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
61 |
+
| 0.0179 | 2.5 | 120 | 0.0802 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
62 |
+
| 0.0059 | 3.12 | 150 | 0.0361 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
63 |
+
| 0.0032 | 3.75 | 180 | 0.0472 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
64 |
+
| 0.0035 | 4.38 | 210 | 0.0995 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
65 |
+
| 0.0018 | 5.0 | 240 | 0.0930 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
66 |
+
| 0.0015 | 5.62 | 270 | 0.0957 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
67 |
+
| 0.0013 | 6.25 | 300 | 0.0991 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
68 |
+
| 0.0012 | 6.88 | 330 | 0.1028 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
69 |
+
| 0.001 | 7.5 | 360 | 0.0992 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
70 |
+
| 0.0009 | 8.12 | 390 | 0.1020 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
71 |
+
| 0.0009 | 8.75 | 420 | 0.1037 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
72 |
+
| 0.0008 | 9.38 | 450 | 0.1037 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
73 |
+
| 0.0007 | 10.0 | 480 | 0.1035 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
74 |
+
| 0.0007 | 10.62 | 510 | 0.1044 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
75 |
+
| 0.0006 | 11.25 | 540 | 0.1063 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
76 |
+
| 0.0006 | 11.88 | 570 | 0.1061 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
77 |
+
| 0.0005 | 12.5 | 600 | 0.1071 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
78 |
+
| 0.0005 | 13.12 | 630 | 0.1057 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
79 |
+
| 0.0005 | 13.75 | 660 | 0.1064 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
80 |
+
| 0.0005 | 14.38 | 690 | 0.1072 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
81 |
+
| 0.0004 | 15.0 | 720 | 0.1063 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
82 |
+
| 0.0004 | 15.62 | 750 | 0.1068 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
83 |
+
| 0.0004 | 16.25 | 780 | 0.1090 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
84 |
+
| 0.0004 | 16.88 | 810 | 0.1085 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
85 |
+
| 0.0004 | 17.5 | 840 | 0.1095 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
86 |
+
| 0.0004 | 18.12 | 870 | 0.1106 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
87 |
+
| 0.0004 | 18.75 | 900 | 0.1110 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
88 |
+
| 0.0004 | 19.38 | 930 | 0.1101 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
89 |
+
| 0.0004 | 20.0 | 960 | 0.1110 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
90 |
+
| 0.0003 | 20.62 | 990 | 0.1116 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
91 |
+
| 0.0003 | 21.25 | 1020 | 0.1121 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
92 |
+
| 0.0003 | 21.88 | 1050 | 0.1126 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
93 |
+
| 0.0003 | 22.5 | 1080 | 0.1117 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
94 |
+
| 0.0003 | 23.12 | 1110 | 0.1127 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
95 |
+
| 0.0003 | 23.75 | 1140 | 0.1135 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
96 |
+
| 0.0003 | 24.38 | 1170 | 0.1138 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
97 |
+
| 0.0003 | 25.0 | 1200 | 0.1145 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
98 |
+
| 0.0003 | 25.62 | 1230 | 0.1151 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
99 |
+
| 0.0003 | 26.25 | 1260 | 0.1151 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
100 |
+
| 0.0003 | 26.88 | 1290 | 0.1148 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
101 |
+
| 0.0003 | 27.5 | 1320 | 0.1152 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
102 |
+
| 0.0003 | 28.12 | 1350 | 0.1153 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
103 |
+
| 0.0003 | 28.75 | 1380 | 0.1156 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
104 |
+
| 0.0003 | 29.38 | 1410 | 0.1156 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
105 |
+
| 0.0003 | 30.0 | 1440 | 0.1156 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
|
106 |
|
107 |
|
108 |
### Framework versions
|
109 |
|
110 |
+
- Transformers 4.37.0
|
111 |
- Pytorch 2.1.0+cu121
|
112 |
- Datasets 2.16.1
|
113 |
- Tokenizers 0.15.0
|
config.json
CHANGED
@@ -32,7 +32,7 @@
|
|
32 |
"position_embedding_type": "absolute",
|
33 |
"problem_type": "single_label_classification",
|
34 |
"torch_dtype": "float32",
|
35 |
-
"transformers_version": "4.
|
36 |
"type_vocab_size": 2,
|
37 |
"use_cache": true,
|
38 |
"vocab_size": 28996
|
|
|
32 |
"position_embedding_type": "absolute",
|
33 |
"problem_type": "single_label_classification",
|
34 |
"torch_dtype": "float32",
|
35 |
+
"transformers_version": "4.37.0",
|
36 |
"type_vocab_size": 2,
|
37 |
"use_cache": true,
|
38 |
"vocab_size": 28996
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 433276920
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8cca8de7ac313d38a1feea7a9dea0b219bad023616f89f8e1fd2efddfbbc1bd
|
3 |
size 433276920
|
runs/Jan22_11-29-54_e51572f30c70/events.out.tfevents.1705923042.e51572f30c70.565.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34abc7babf20c0881e164503eb80c7eda62f28f1edfb3bc7a999525976bce402
|
3 |
+
size 35043
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4664
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca46491bff09500e83a4af31f4590391cd0f367c2d25c453ef459dde72e63b2b
|
3 |
size 4664
|