SharonTudi commited on
Commit
fad9815
·
verified ·
1 Parent(s): c30f396

End of training

Browse files
README.md CHANGED
@@ -20,7 +20,7 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.2117
24
  - Precision: 0.9762
25
  - Recall: 0.9737
26
  - F1: 0.9736
@@ -43,7 +43,7 @@ More information needed
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
- - learning_rate: 3e-05
47
  - train_batch_size: 8
48
  - eval_batch_size: 8
49
  - seed: 42
@@ -55,54 +55,54 @@ The following hyperparameters were used during training:
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
- | 0.9949 | 0.62 | 30 | 0.4697 | 0.9659 | 0.9605 | 0.9603 | 0.9605 |
59
- | 0.3831 | 1.25 | 60 | 0.1338 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
60
- | 0.1135 | 1.88 | 90 | 0.1407 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
61
- | 0.0256 | 2.5 | 120 | 0.1359 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
62
- | 0.0126 | 3.12 | 150 | 0.1449 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
63
- | 0.0227 | 3.75 | 180 | 0.1552 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
64
- | 0.0051 | 4.38 | 210 | 0.1573 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
65
- | 0.0037 | 5.0 | 240 | 0.1594 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
66
- | 0.003 | 5.62 | 270 | 0.1626 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
67
- | 0.0024 | 6.25 | 300 | 0.1645 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
68
- | 0.0021 | 6.88 | 330 | 0.1737 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
69
- | 0.0018 | 7.5 | 360 | 0.1759 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
70
- | 0.0015 | 8.12 | 390 | 0.1774 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
71
- | 0.0014 | 8.75 | 420 | 0.1801 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
72
- | 0.0013 | 9.38 | 450 | 0.1837 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
73
- | 0.0011 | 10.0 | 480 | 0.1852 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
74
- | 0.001 | 10.62 | 510 | 0.1878 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
75
- | 0.0009 | 11.25 | 540 | 0.1892 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
76
- | 0.0009 | 11.88 | 570 | 0.1939 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
77
- | 0.0008 | 12.5 | 600 | 0.1948 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
78
- | 0.0008 | 13.12 | 630 | 0.1961 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
79
- | 0.0007 | 13.75 | 660 | 0.1965 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
80
- | 0.0007 | 14.38 | 690 | 0.1972 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
81
- | 0.0006 | 15.0 | 720 | 0.1988 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
82
- | 0.0006 | 15.62 | 750 | 0.1993 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
83
- | 0.0005 | 16.25 | 780 | 0.2006 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
84
- | 0.0005 | 16.88 | 810 | 0.2020 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
85
- | 0.0005 | 17.5 | 840 | 0.2031 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
86
- | 0.0005 | 18.12 | 870 | 0.2045 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
87
- | 0.0005 | 18.75 | 900 | 0.2054 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
88
- | 0.0004 | 19.38 | 930 | 0.2051 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
89
- | 0.0004 | 20.0 | 960 | 0.2053 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
90
- | 0.0004 | 20.62 | 990 | 0.2058 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
91
- | 0.0004 | 21.25 | 1020 | 0.2069 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
92
- | 0.0004 | 21.88 | 1050 | 0.2076 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
93
- | 0.0004 | 22.5 | 1080 | 0.2079 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
94
- | 0.0004 | 23.12 | 1110 | 0.2084 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
95
- | 0.0004 | 23.75 | 1140 | 0.2092 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
96
- | 0.0004 | 24.38 | 1170 | 0.2095 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
97
- | 0.0004 | 25.0 | 1200 | 0.2100 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
98
- | 0.0004 | 25.62 | 1230 | 0.2104 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
99
- | 0.0003 | 26.25 | 1260 | 0.2109 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
100
- | 0.0003 | 26.88 | 1290 | 0.2111 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
101
- | 0.0003 | 27.5 | 1320 | 0.2113 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
102
- | 0.0003 | 28.12 | 1350 | 0.2115 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
103
- | 0.0003 | 28.75 | 1380 | 0.2116 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
104
- | 0.0003 | 29.38 | 1410 | 0.2117 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
105
- | 0.0004 | 30.0 | 1440 | 0.2117 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
106
 
107
 
108
  ### Framework versions
 
20
 
21
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.2058
24
  - Precision: 0.9762
25
  - Recall: 0.9737
26
  - F1: 0.9736
 
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
  - train_batch_size: 8
48
  - eval_batch_size: 8
49
  - seed: 42
 
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 1.2014 | 0.62 | 30 | 0.8233 | 0.9565 | 0.9474 | 0.9468 | 0.9474 |
59
+ | 0.6189 | 1.25 | 60 | 0.3016 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
60
+ | 0.2599 | 1.88 | 90 | 0.1623 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
61
+ | 0.0907 | 2.5 | 120 | 0.1075 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
62
+ | 0.0423 | 3.12 | 150 | 0.1191 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
63
+ | 0.0278 | 3.75 | 180 | 0.1517 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
64
+ | 0.0115 | 4.38 | 210 | 0.1488 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
65
+ | 0.0087 | 5.0 | 240 | 0.1489 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
66
+ | 0.007 | 5.62 | 270 | 0.1541 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
67
+ | 0.0057 | 6.25 | 300 | 0.1573 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
68
+ | 0.0051 | 6.88 | 330 | 0.1702 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
69
+ | 0.0041 | 7.5 | 360 | 0.1715 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
70
+ | 0.0034 | 8.12 | 390 | 0.1725 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
71
+ | 0.0031 | 8.75 | 420 | 0.1746 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
72
+ | 0.0028 | 9.38 | 450 | 0.1769 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
73
+ | 0.0026 | 10.0 | 480 | 0.1781 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
74
+ | 0.0024 | 10.62 | 510 | 0.1808 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
75
+ | 0.0022 | 11.25 | 540 | 0.1827 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
76
+ | 0.002 | 11.88 | 570 | 0.1845 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
77
+ | 0.0018 | 12.5 | 600 | 0.1861 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
78
+ | 0.0017 | 13.12 | 630 | 0.1877 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
79
+ | 0.0016 | 13.75 | 660 | 0.1886 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
80
+ | 0.0014 | 14.38 | 690 | 0.1897 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
81
+ | 0.0014 | 15.0 | 720 | 0.1915 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
82
+ | 0.0014 | 15.62 | 750 | 0.1925 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
83
+ | 0.0012 | 16.25 | 780 | 0.1937 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
84
+ | 0.0012 | 16.88 | 810 | 0.1949 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
85
+ | 0.0011 | 17.5 | 840 | 0.1962 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
86
+ | 0.0011 | 18.12 | 870 | 0.1970 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
87
+ | 0.001 | 18.75 | 900 | 0.1977 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
88
+ | 0.001 | 19.38 | 930 | 0.1982 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
89
+ | 0.001 | 20.0 | 960 | 0.1990 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
90
+ | 0.0009 | 20.62 | 990 | 0.1999 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
91
+ | 0.0009 | 21.25 | 1020 | 0.2008 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
92
+ | 0.0009 | 21.88 | 1050 | 0.2016 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
93
+ | 0.0009 | 22.5 | 1080 | 0.2021 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
94
+ | 0.0009 | 23.12 | 1110 | 0.2027 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
95
+ | 0.0008 | 23.75 | 1140 | 0.2033 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
96
+ | 0.0008 | 24.38 | 1170 | 0.2036 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
97
+ | 0.0008 | 25.0 | 1200 | 0.2041 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
98
+ | 0.0008 | 25.62 | 1230 | 0.2044 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
99
+ | 0.0008 | 26.25 | 1260 | 0.2049 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
100
+ | 0.0007 | 26.88 | 1290 | 0.2052 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
101
+ | 0.0008 | 27.5 | 1320 | 0.2054 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
102
+ | 0.0007 | 28.12 | 1350 | 0.2056 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
103
+ | 0.0007 | 28.75 | 1380 | 0.2057 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
104
+ | 0.0008 | 29.38 | 1410 | 0.2058 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
105
+ | 0.0008 | 30.0 | 1440 | 0.2058 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
106
 
107
 
108
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a8c2542f227b09948b08a109b7e9df104912a38d71129c457dca1e4222c213f9
3
  size 267838720
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2455114029082d86db68b4ccdca3e94ec7360e19b2cec1a2d1de01a4541bdcfc
3
  size 267838720
runs/Jan18_11-20-46_3c59cc46f7a9/events.out.tfevents.1705576868.3c59cc46f7a9.1662.4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9feba15f0f28910d51ab35812a30103cd0573147619c2b01385327fa7e830d90
3
+ size 34946
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6d58b5206d1611160200b55f1a865681e96e5b5abd977e0792ff043a158d24d1
3
  size 4664
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d727225103b1dd544ab6f8f61c7e896961c66020f3392225a421e89f95c6d249
3
  size 4664