tags: | |
- image-classification | |
- timm | |
library_name: timm | |
license: mit | |
datasets: | |
- cifar10 | |
metrics: | |
- accuracy | |
model-index: | |
- name: resnet18 | |
results: | |
- task: | |
type: image-classification | |
dataset: | |
name: cifar10 | |
type: cifar10 | |
metrics: | |
- name: accuracy | |
type: accuracy | |
value: 94.73 | |
# Model card for resnet18_cifar10 | |
This is a resnet18 model trained on the cifar10 dataset. | |
To load this model use the `timm` library and run the following code: | |
```python | |
import timm | |
model = timm.create_model("hf_hub:SamAdamDay/resnet18_cifar10", pretrained=True) | |
``` | |
The model was trained using the following command: | |
```bash | |
./distributed_train.sh --dataset torch/cifar10 --data-dir /root/data --dataset-download --model resnet18 --lr-base 0.3 --epochs 100 --input-size 3 256 256 -mean 0.49139968 0.48215827 0.44653124 --std 0.24703233 0.24348505 0.26158768 --num-classes 10 | |
``` | |
## Metrics | |
The model has a test accuracy of 94.73. | |
## Model Details | |
- **Dataset:** cifar10 | |
- **Number of epochs:** 100 | |
- **Batch size:** 128 | |
- **Base LR:** 0.3 | |
- **LR scheduler:** cosine | |
- **Input size** (3, 256, 256), images are scaled to this size | |
- **PyTorch version:** 2.3.0+cu121 | |
- **timm version:** 1.0.7 | |