Model card for resnet18_cifar10

This is a resnet18 model trained on the cifar10 dataset. To load this model use the timm library and run the following code:

import timm
model = timm.create_model("hf_hub:SamAdamDay/resnet18_cifar10", pretrained=True)

The model was trained using the following command:

./distributed_train.sh --dataset torch/cifar10 --data-dir /root/data --dataset-download --model resnet18 --lr-base 0.3 --epochs 100 --input-size 3 256 256 -mean 0.49139968 0.48215827 0.44653124 --std 0.24703233 0.24348505 0.26158768 --num-classes 10

Metrics

The model has a test accuracy of 94.73.

Model Details

  • Dataset: cifar10
  • Number of epochs: 100
  • Batch size: 128
  • Base LR: 0.3
  • LR scheduler: cosine
  • Input size (3, 256, 256), images are scaled to this size
  • PyTorch version: 2.3.0+cu121
  • timm version: 1.0.7
Downloads last month
139
Safetensors
Model size
11.2M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train SamAdamDay/resnet18_cifar10

Evaluation results