metadata
language:
- bn
license: apache-2.0
base_model: openai/whisper-small
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- bengaliAI-kaggle
metrics:
- wer
model-index:
- name: whisper-small fintuned-0-10000-50%
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: bengaliAI-kaggle
type: bengaliAI-kaggle
args: 'config: bn, split: test'
metrics:
- name: Wer
type: wer
value: 90.44179607559889
whisper-small fintuned-0-10000-50%
This model is a fine-tuned version of openai/whisper-small on the bengaliAI-kaggle dataset. It achieves the following results on the evaluation set:
- Loss: 0.6193
- Wer: 90.4418
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 200
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.8424 | 0.4 | 100 | 0.7538 | 103.2021 |
0.6195 | 0.8 | 200 | 0.6193 | 90.4418 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.0
- Datasets 2.14.4
- Tokenizers 0.13.3