--- language: - bn license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - bengaliAI-kaggle metrics: - wer model-index: - name: whisper-small fintuned-0-10000-50% results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: bengaliAI-kaggle type: bengaliAI-kaggle args: 'config: bn, split: test' metrics: - name: Wer type: wer value: 90.44179607559889 --- # whisper-small fintuned-0-10000-50% This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the bengaliAI-kaggle dataset. It achieves the following results on the evaluation set: - Loss: 0.6193 - Wer: 90.4418 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8424 | 0.4 | 100 | 0.7538 | 103.2021 | | 0.6195 | 0.8 | 200 | 0.6193 | 90.4418 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.0 - Datasets 2.14.4 - Tokenizers 0.13.3