metadata
library_name: transformers
license: apache-2.0
base_model: michiyasunaga/BioLinkBERT-base
tags:
- token-classification
- generated_from_trainer
datasets:
- Rodrigo1771/drugtemist-en-fasttext-8-ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: output
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: Rodrigo1771/drugtemist-en-fasttext-8-ner
type: Rodrigo1771/drugtemist-en-fasttext-8-ner
config: DrugTEMIST English NER
split: validation
args: DrugTEMIST English NER
metrics:
- name: Precision
type: precision
value: 0.9271889400921659
- name: Recall
type: recall
value: 0.9375582479030755
- name: F1
type: f1
value: 0.9323447636700648
- name: Accuracy
type: accuracy
value: 0.9987162671280663
output
This model is a fine-tuned version of michiyasunaga/BioLinkBERT-base on the Rodrigo1771/drugtemist-en-fasttext-8-ner dataset. It achieves the following results on the evaluation set:
- Loss: 0.0080
- Precision: 0.9272
- Recall: 0.9376
- F1: 0.9323
- Accuracy: 0.9987
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.9990 | 481 | 0.0042 | 0.9173 | 0.9413 | 0.9292 | 0.9987 |
0.0156 | 2.0 | 963 | 0.0049 | 0.9134 | 0.9245 | 0.9189 | 0.9986 |
0.0039 | 2.9990 | 1444 | 0.0053 | 0.8914 | 0.9487 | 0.9192 | 0.9986 |
0.0024 | 4.0 | 1926 | 0.0061 | 0.8820 | 0.9543 | 0.9167 | 0.9985 |
0.0017 | 4.9990 | 2407 | 0.0074 | 0.9199 | 0.9310 | 0.9254 | 0.9986 |
0.0011 | 6.0 | 2889 | 0.0079 | 0.9170 | 0.9366 | 0.9267 | 0.9986 |
0.0007 | 6.9990 | 3370 | 0.0067 | 0.9092 | 0.9422 | 0.9254 | 0.9987 |
0.0005 | 8.0 | 3852 | 0.0073 | 0.9249 | 0.9301 | 0.9275 | 0.9987 |
0.0004 | 8.9990 | 4333 | 0.0080 | 0.9272 | 0.9376 | 0.9323 | 0.9987 |
0.0002 | 9.9896 | 4810 | 0.0079 | 0.9247 | 0.9385 | 0.9315 | 0.9987 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1