--- library_name: transformers license: apache-2.0 base_model: michiyasunaga/BioLinkBERT-base tags: - token-classification - generated_from_trainer datasets: - Rodrigo1771/drugtemist-en-fasttext-8-ner metrics: - precision - recall - f1 - accuracy model-index: - name: output results: - task: name: Token Classification type: token-classification dataset: name: Rodrigo1771/drugtemist-en-fasttext-8-ner type: Rodrigo1771/drugtemist-en-fasttext-8-ner config: DrugTEMIST English NER split: validation args: DrugTEMIST English NER metrics: - name: Precision type: precision value: 0.9271889400921659 - name: Recall type: recall value: 0.9375582479030755 - name: F1 type: f1 value: 0.9323447636700648 - name: Accuracy type: accuracy value: 0.9987162671280663 --- # output This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the Rodrigo1771/drugtemist-en-fasttext-8-ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0080 - Precision: 0.9272 - Recall: 0.9376 - F1: 0.9323 - Accuracy: 0.9987 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.9990 | 481 | 0.0042 | 0.9173 | 0.9413 | 0.9292 | 0.9987 | | 0.0156 | 2.0 | 963 | 0.0049 | 0.9134 | 0.9245 | 0.9189 | 0.9986 | | 0.0039 | 2.9990 | 1444 | 0.0053 | 0.8914 | 0.9487 | 0.9192 | 0.9986 | | 0.0024 | 4.0 | 1926 | 0.0061 | 0.8820 | 0.9543 | 0.9167 | 0.9985 | | 0.0017 | 4.9990 | 2407 | 0.0074 | 0.9199 | 0.9310 | 0.9254 | 0.9986 | | 0.0011 | 6.0 | 2889 | 0.0079 | 0.9170 | 0.9366 | 0.9267 | 0.9986 | | 0.0007 | 6.9990 | 3370 | 0.0067 | 0.9092 | 0.9422 | 0.9254 | 0.9987 | | 0.0005 | 8.0 | 3852 | 0.0073 | 0.9249 | 0.9301 | 0.9275 | 0.9987 | | 0.0004 | 8.9990 | 4333 | 0.0080 | 0.9272 | 0.9376 | 0.9323 | 0.9987 | | 0.0002 | 9.9896 | 4810 | 0.0079 | 0.9247 | 0.9385 | 0.9315 | 0.9987 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1