Peaky8linders's picture
End of training
22de27a verified
metadata
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
library_name: peft
license: apache-2.0
tags:
  - axolotl
  - generated_from_trainer
model-index:
  - name: isafpr-tiny-llama-lora
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer

load_in_8bit: true
load_in_4bit: false
strict: false

data_seed: 2606
seed: 2606

datasets:
  - path: data/templatefree_isaf_press_releases_ft_train.jsonl
    type: input_output
dataset_prepared_path:
val_set_size: 0.1
output_dir: tiny-llama/lora-out
hub_model_id: Peaky8linders/isafpr-tiny-llama-lora

sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

isafpr-tiny-llama-lora

This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0395

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 2606
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
1.7938 0.0138 1 1.7961
0.2755 0.2483 18 0.2099
0.0937 0.4966 36 0.0798
0.0625 0.7448 54 0.0646
0.0507 0.9931 72 0.0581
0.0466 1.2138 90 0.0516
0.0391 1.4621 108 0.0485
0.0534 1.7103 126 0.0457
0.0611 1.9586 144 0.0439
0.0281 2.1793 162 0.0434
0.0382 2.4276 180 0.0416
0.031 2.6759 198 0.0407
0.0278 2.9241 216 0.0400
0.0377 3.1448 234 0.0397
0.0247 3.3931 252 0.0400
0.0419 3.6414 270 0.0395
0.0273 3.8897 288 0.0395

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.1
  • Pytorch 2.1.2+cu118
  • Datasets 2.19.1
  • Tokenizers 0.19.1