--- base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T library_name: peft license: apache-2.0 tags: - axolotl - generated_from_trainer model-index: - name: isafpr-tiny-llama-lora results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: true load_in_4bit: false strict: false data_seed: 2606 seed: 2606 datasets: - path: data/templatefree_isaf_press_releases_ft_train.jsonl type: input_output dataset_prepared_path: val_set_size: 0.1 output_dir: tiny-llama/lora-out hub_model_id: Peaky8linders/isafpr-tiny-llama-lora sequence_len: 4096 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# isafpr-tiny-llama-lora This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0395 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 2606 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.7938 | 0.0138 | 1 | 1.7961 | | 0.2755 | 0.2483 | 18 | 0.2099 | | 0.0937 | 0.4966 | 36 | 0.0798 | | 0.0625 | 0.7448 | 54 | 0.0646 | | 0.0507 | 0.9931 | 72 | 0.0581 | | 0.0466 | 1.2138 | 90 | 0.0516 | | 0.0391 | 1.4621 | 108 | 0.0485 | | 0.0534 | 1.7103 | 126 | 0.0457 | | 0.0611 | 1.9586 | 144 | 0.0439 | | 0.0281 | 2.1793 | 162 | 0.0434 | | 0.0382 | 2.4276 | 180 | 0.0416 | | 0.031 | 2.6759 | 198 | 0.0407 | | 0.0278 | 2.9241 | 216 | 0.0400 | | 0.0377 | 3.1448 | 234 | 0.0397 | | 0.0247 | 3.3931 | 252 | 0.0400 | | 0.0419 | 3.6414 | 270 | 0.0395 | | 0.0273 | 3.8897 | 288 | 0.0395 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.1 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1