Monday-Someday's picture
Update README.md
d0108b4 verified
---
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-base-patch16-224-finetuned-ISIC-dec2024gray
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9369401906963305
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-patch16-224-finetuned-ISIC-dec2024gray
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1549
- Accuracy: 0.9369
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.7609 | 1.0 | 974 | 0.1860 | 0.9231 |
| 0.5981 | 2.0 | 1948 | 0.1640 | 0.9320 |
| 0.5217 | 2.9974 | 2919 | 0.1549 | 0.9369 |
### Testing results
- True positive: 1341
- False positive: 290
- True negative: 14923
- False negative: 750
- Precision: 0.822
- Recall: 0.641
- Accuracy: 0.940
- F1: 0.721
### Framework versions
- Transformers 4.47.1
- Pytorch 2.6.0.dev20241225+cu126
- Datasets 3.2.0
- Tokenizers 0.21.0