Monday-Someday's picture
Update README.md
d0108b4 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-base-patch16-224-finetuned-ISIC-dec2024gray
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9369401906963305

vit-base-patch16-224-finetuned-ISIC-dec2024gray

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1549
  • Accuracy: 0.9369

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7609 1.0 974 0.1860 0.9231
0.5981 2.0 1948 0.1640 0.9320
0.5217 2.9974 2919 0.1549 0.9369

Testing results

  • True positive: 1341

  • False positive: 290

  • True negative: 14923

  • False negative: 750

  • Precision: 0.822

  • Recall: 0.641

  • Accuracy: 0.940

  • F1: 0.721

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.6.0.dev20241225+cu126
  • Datasets 3.2.0
  • Tokenizers 0.21.0