metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-base-patch16-224-finetuned-ISIC-dec2024gray
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9369401906963305
vit-base-patch16-224-finetuned-ISIC-dec2024gray
This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1549
- Accuracy: 0.9369
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.7609 | 1.0 | 974 | 0.1860 | 0.9231 |
0.5981 | 2.0 | 1948 | 0.1640 | 0.9320 |
0.5217 | 2.9974 | 2919 | 0.1549 | 0.9369 |
Testing results
True positive: 1341
False positive: 290
True negative: 14923
False negative: 750
Precision: 0.822
Recall: 0.641
Accuracy: 0.940
F1: 0.721
Framework versions
- Transformers 4.47.1
- Pytorch 2.6.0.dev20241225+cu126
- Datasets 3.2.0
- Tokenizers 0.21.0