metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-base-patch16-224-finetuned-ISIC-dec2024
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9380236925744004
vit-base-patch16-224-finetuned-ISIC-dec2024
This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1523
- Accuracy: 0.9380
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.8152 | 0.9985 | 486 | 0.1791 | 0.9223 |
0.6467 | 1.9985 | 972 | 0.1590 | 0.9361 |
0.5399 | 2.9985 | 1458 | 0.1523 | 0.9380 |
Testing data confusion values: True positive: 1301 False positive: 301 True negative: 14912 False negative: 792
Framework versions
- Transformers 4.47.1
- Pytorch 2.6.0.dev20241225+cu126
- Datasets 3.2.0
- Tokenizers 0.21.0