Monday-Someday
commited on
Update README.md
Browse filesadd testing data confusion matrix
README.md
CHANGED
@@ -1,81 +1,86 @@
|
|
1 |
-
---
|
2 |
-
library_name: transformers
|
3 |
-
license: apache-2.0
|
4 |
-
base_model: google/vit-base-patch16-224
|
5 |
-
tags:
|
6 |
-
- generated_from_trainer
|
7 |
-
datasets:
|
8 |
-
- imagefolder
|
9 |
-
metrics:
|
10 |
-
- accuracy
|
11 |
-
model-index:
|
12 |
-
- name: vit-base-patch16-224-finetuned-ISIC-dec2024
|
13 |
-
results:
|
14 |
-
- task:
|
15 |
-
name: Image Classification
|
16 |
-
type: image-classification
|
17 |
-
dataset:
|
18 |
-
name: imagefolder
|
19 |
-
type: imagefolder
|
20 |
-
config: default
|
21 |
-
split: train
|
22 |
-
args: default
|
23 |
-
metrics:
|
24 |
-
- name: Accuracy
|
25 |
-
type: accuracy
|
26 |
-
value: 0.9380236925744004
|
27 |
-
---
|
28 |
-
|
29 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
30 |
-
should probably proofread and complete it, then remove this comment. -->
|
31 |
-
|
32 |
-
# vit-base-patch16-224-finetuned-ISIC-dec2024
|
33 |
-
|
34 |
-
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
|
35 |
-
It achieves the following results on the evaluation set:
|
36 |
-
- Loss: 0.1523
|
37 |
-
- Accuracy: 0.9380
|
38 |
-
|
39 |
-
## Model description
|
40 |
-
|
41 |
-
More information needed
|
42 |
-
|
43 |
-
## Intended uses & limitations
|
44 |
-
|
45 |
-
More information needed
|
46 |
-
|
47 |
-
## Training and evaluation data
|
48 |
-
|
49 |
-
More information needed
|
50 |
-
|
51 |
-
## Training procedure
|
52 |
-
|
53 |
-
### Training hyperparameters
|
54 |
-
|
55 |
-
The following hyperparameters were used during training:
|
56 |
-
- learning_rate: 5e-05
|
57 |
-
- train_batch_size: 32
|
58 |
-
- eval_batch_size: 32
|
59 |
-
- seed: 42
|
60 |
-
- gradient_accumulation_steps: 4
|
61 |
-
- total_train_batch_size: 128
|
62 |
-
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
63 |
-
- lr_scheduler_type: linear
|
64 |
-
- lr_scheduler_warmup_ratio: 0.1
|
65 |
-
- num_epochs: 3
|
66 |
-
|
67 |
-
### Training results
|
68 |
-
|
69 |
-
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
70 |
-
|:-------------:|:------:|:----:|:---------------:|:--------:|
|
71 |
-
| 0.8152 | 0.9985 | 486 | 0.1791 | 0.9223 |
|
72 |
-
| 0.6467 | 1.9985 | 972 | 0.1590 | 0.9361 |
|
73 |
-
| 0.5399 | 2.9985 | 1458 | 0.1523 | 0.9380 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: google/vit-base-patch16-224
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- imagefolder
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: vit-base-patch16-224-finetuned-ISIC-dec2024
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Image Classification
|
16 |
+
type: image-classification
|
17 |
+
dataset:
|
18 |
+
name: imagefolder
|
19 |
+
type: imagefolder
|
20 |
+
config: default
|
21 |
+
split: train
|
22 |
+
args: default
|
23 |
+
metrics:
|
24 |
+
- name: Accuracy
|
25 |
+
type: accuracy
|
26 |
+
value: 0.9380236925744004
|
27 |
+
---
|
28 |
+
|
29 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
30 |
+
should probably proofread and complete it, then remove this comment. -->
|
31 |
+
|
32 |
+
# vit-base-patch16-224-finetuned-ISIC-dec2024
|
33 |
+
|
34 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
|
35 |
+
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 0.1523
|
37 |
+
- Accuracy: 0.9380
|
38 |
+
|
39 |
+
## Model description
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Intended uses & limitations
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training and evaluation data
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Training procedure
|
52 |
+
|
53 |
+
### Training hyperparameters
|
54 |
+
|
55 |
+
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 5e-05
|
57 |
+
- train_batch_size: 32
|
58 |
+
- eval_batch_size: 32
|
59 |
+
- seed: 42
|
60 |
+
- gradient_accumulation_steps: 4
|
61 |
+
- total_train_batch_size: 128
|
62 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
63 |
+
- lr_scheduler_type: linear
|
64 |
+
- lr_scheduler_warmup_ratio: 0.1
|
65 |
+
- num_epochs: 3
|
66 |
+
|
67 |
+
### Training results
|
68 |
+
|
69 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
70 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|
|
71 |
+
| 0.8152 | 0.9985 | 486 | 0.1791 | 0.9223 |
|
72 |
+
| 0.6467 | 1.9985 | 972 | 0.1590 | 0.9361 |
|
73 |
+
| 0.5399 | 2.9985 | 1458 | 0.1523 | 0.9380 |
|
74 |
+
|
75 |
+
Testing data confusion values:
|
76 |
+
True positive: 1301
|
77 |
+
False positive: 301
|
78 |
+
True negative: 14912
|
79 |
+
False negative: 792
|
80 |
+
|
81 |
+
### Framework versions
|
82 |
+
|
83 |
+
- Transformers 4.47.1
|
84 |
+
- Pytorch 2.6.0.dev20241225+cu126
|
85 |
+
- Datasets 3.2.0
|
86 |
+
- Tokenizers 0.21.0
|