Monday-Someday commited on
Commit
749e412
·
verified ·
1 Parent(s): a11b637

Update README.md

Browse files

add testing data confusion matrix

Files changed (1) hide show
  1. README.md +86 -81
README.md CHANGED
@@ -1,81 +1,86 @@
1
- ---
2
- library_name: transformers
3
- license: apache-2.0
4
- base_model: google/vit-base-patch16-224
5
- tags:
6
- - generated_from_trainer
7
- datasets:
8
- - imagefolder
9
- metrics:
10
- - accuracy
11
- model-index:
12
- - name: vit-base-patch16-224-finetuned-ISIC-dec2024
13
- results:
14
- - task:
15
- name: Image Classification
16
- type: image-classification
17
- dataset:
18
- name: imagefolder
19
- type: imagefolder
20
- config: default
21
- split: train
22
- args: default
23
- metrics:
24
- - name: Accuracy
25
- type: accuracy
26
- value: 0.9380236925744004
27
- ---
28
-
29
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
- should probably proofread and complete it, then remove this comment. -->
31
-
32
- # vit-base-patch16-224-finetuned-ISIC-dec2024
33
-
34
- This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
35
- It achieves the following results on the evaluation set:
36
- - Loss: 0.1523
37
- - Accuracy: 0.9380
38
-
39
- ## Model description
40
-
41
- More information needed
42
-
43
- ## Intended uses & limitations
44
-
45
- More information needed
46
-
47
- ## Training and evaluation data
48
-
49
- More information needed
50
-
51
- ## Training procedure
52
-
53
- ### Training hyperparameters
54
-
55
- The following hyperparameters were used during training:
56
- - learning_rate: 5e-05
57
- - train_batch_size: 32
58
- - eval_batch_size: 32
59
- - seed: 42
60
- - gradient_accumulation_steps: 4
61
- - total_train_batch_size: 128
62
- - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
63
- - lr_scheduler_type: linear
64
- - lr_scheduler_warmup_ratio: 0.1
65
- - num_epochs: 3
66
-
67
- ### Training results
68
-
69
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
70
- |:-------------:|:------:|:----:|:---------------:|:--------:|
71
- | 0.8152 | 0.9985 | 486 | 0.1791 | 0.9223 |
72
- | 0.6467 | 1.9985 | 972 | 0.1590 | 0.9361 |
73
- | 0.5399 | 2.9985 | 1458 | 0.1523 | 0.9380 |
74
-
75
-
76
- ### Framework versions
77
-
78
- - Transformers 4.47.1
79
- - Pytorch 2.6.0.dev20241225+cu126
80
- - Datasets 3.2.0
81
- - Tokenizers 0.21.0
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: google/vit-base-patch16-224
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - imagefolder
9
+ metrics:
10
+ - accuracy
11
+ model-index:
12
+ - name: vit-base-patch16-224-finetuned-ISIC-dec2024
13
+ results:
14
+ - task:
15
+ name: Image Classification
16
+ type: image-classification
17
+ dataset:
18
+ name: imagefolder
19
+ type: imagefolder
20
+ config: default
21
+ split: train
22
+ args: default
23
+ metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 0.9380236925744004
27
+ ---
28
+
29
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
+ should probably proofread and complete it, then remove this comment. -->
31
+
32
+ # vit-base-patch16-224-finetuned-ISIC-dec2024
33
+
34
+ This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
35
+ It achieves the following results on the evaluation set:
36
+ - Loss: 0.1523
37
+ - Accuracy: 0.9380
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 5e-05
57
+ - train_batch_size: 32
58
+ - eval_batch_size: 32
59
+ - seed: 42
60
+ - gradient_accumulation_steps: 4
61
+ - total_train_batch_size: 128
62
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
63
+ - lr_scheduler_type: linear
64
+ - lr_scheduler_warmup_ratio: 0.1
65
+ - num_epochs: 3
66
+
67
+ ### Training results
68
+
69
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
70
+ |:-------------:|:------:|:----:|:---------------:|:--------:|
71
+ | 0.8152 | 0.9985 | 486 | 0.1791 | 0.9223 |
72
+ | 0.6467 | 1.9985 | 972 | 0.1590 | 0.9361 |
73
+ | 0.5399 | 2.9985 | 1458 | 0.1523 | 0.9380 |
74
+
75
+ Testing data confusion values:
76
+ True positive: 1301
77
+ False positive: 301
78
+ True negative: 14912
79
+ False negative: 792
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.47.1
84
+ - Pytorch 2.6.0.dev20241225+cu126
85
+ - Datasets 3.2.0
86
+ - Tokenizers 0.21.0