MarPla's picture
End of training
fab9bbe verified
metadata
base_model: google/pegasus-large
tags:
  - generated_from_trainer
metrics:
  - rouge
  - bleu
model-index:
  - name: HealthSciencePegasusLargeModel
    results: []

HealthSciencePegasusLargeModel

This model is a fine-tuned version of google/pegasus-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 5.0998
  • Rouge1: 51.1109
  • Rouge2: 19.0065
  • Rougel: 35.0665
  • Rougelsum: 46.3738
  • Bertscore Precision: 79.4711
  • Bertscore Recall: 82.7557
  • Bertscore F1: 81.0748
  • Bleu: 0.1452
  • Gen Len: 231.4938

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bertscore Precision Bertscore Recall Bertscore F1 Bleu Gen Len
6.6062 0.0826 100 6.1946 41.0175 12.1872 26.8664 36.8972 76.5225 80.4867 78.4475 0.0925 231.4938
6.0566 0.1653 200 5.8019 45.7736 15.3675 30.7082 41.4411 77.7511 81.5573 79.6024 0.1196 231.4938
5.8921 0.2479 300 5.6555 45.6004 15.5854 31.2233 41.4395 77.7394 81.6428 79.6366 0.1203 231.4938
5.824 0.3305 400 5.5047 47.3353 17.0337 32.5302 42.994 78.2323 82.0751 80.1012 0.1318 231.4938
5.6546 0.4131 500 5.3968 48.8031 17.9059 33.4654 44.3006 78.5911 82.3105 80.4016 0.1377 231.4938
5.5794 0.4958 600 5.2980 49.3037 18.2072 33.8712 44.6912 78.6863 82.3772 80.4831 0.1396 231.4938
5.5792 0.5784 700 5.2361 49.4211 18.2373 34.1262 44.8449 78.7086 82.4391 80.5245 0.1401 231.4938
5.5137 0.6610 800 5.1859 49.9024 18.4281 34.402 45.3215 79.0156 82.5476 80.7374 0.1413 231.4938
5.3983 0.7436 900 5.1471 50.4151 18.6752 34.688 45.8432 79.2355 82.6237 80.8887 0.1427 231.4938
5.3874 0.8263 1000 5.1214 50.9831 18.9709 34.9595 46.2721 79.3533 82.7398 81.0059 0.1449 231.4938
5.33 0.9089 1100 5.1074 51.1059 19.0707 35.0338 46.2997 79.4385 82.7671 81.0633 0.1456 231.4938
5.4559 0.9915 1200 5.0998 51.1109 19.0065 35.0665 46.3738 79.4711 82.7557 81.0748 0.1452 231.4938

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.2.1
  • Tokenizers 0.19.1