File size: 3,832 Bytes
fab9bbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
base_model: google/pegasus-large
tags:
- generated_from_trainer
metrics:
- rouge
- bleu
model-index:
- name: HealthSciencePegasusLargeModel
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# HealthSciencePegasusLargeModel
This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 5.0998
- Rouge1: 51.1109
- Rouge2: 19.0065
- Rougel: 35.0665
- Rougelsum: 46.3738
- Bertscore Precision: 79.4711
- Bertscore Recall: 82.7557
- Bertscore F1: 81.0748
- Bleu: 0.1452
- Gen Len: 231.4938
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bertscore Precision | Bertscore Recall | Bertscore F1 | Bleu | Gen Len |
|:-------------:|:------:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------------------:|:----------------:|:------------:|:------:|:--------:|
| 6.6062 | 0.0826 | 100 | 6.1946 | 41.0175 | 12.1872 | 26.8664 | 36.8972 | 76.5225 | 80.4867 | 78.4475 | 0.0925 | 231.4938 |
| 6.0566 | 0.1653 | 200 | 5.8019 | 45.7736 | 15.3675 | 30.7082 | 41.4411 | 77.7511 | 81.5573 | 79.6024 | 0.1196 | 231.4938 |
| 5.8921 | 0.2479 | 300 | 5.6555 | 45.6004 | 15.5854 | 31.2233 | 41.4395 | 77.7394 | 81.6428 | 79.6366 | 0.1203 | 231.4938 |
| 5.824 | 0.3305 | 400 | 5.5047 | 47.3353 | 17.0337 | 32.5302 | 42.994 | 78.2323 | 82.0751 | 80.1012 | 0.1318 | 231.4938 |
| 5.6546 | 0.4131 | 500 | 5.3968 | 48.8031 | 17.9059 | 33.4654 | 44.3006 | 78.5911 | 82.3105 | 80.4016 | 0.1377 | 231.4938 |
| 5.5794 | 0.4958 | 600 | 5.2980 | 49.3037 | 18.2072 | 33.8712 | 44.6912 | 78.6863 | 82.3772 | 80.4831 | 0.1396 | 231.4938 |
| 5.5792 | 0.5784 | 700 | 5.2361 | 49.4211 | 18.2373 | 34.1262 | 44.8449 | 78.7086 | 82.4391 | 80.5245 | 0.1401 | 231.4938 |
| 5.5137 | 0.6610 | 800 | 5.1859 | 49.9024 | 18.4281 | 34.402 | 45.3215 | 79.0156 | 82.5476 | 80.7374 | 0.1413 | 231.4938 |
| 5.3983 | 0.7436 | 900 | 5.1471 | 50.4151 | 18.6752 | 34.688 | 45.8432 | 79.2355 | 82.6237 | 80.8887 | 0.1427 | 231.4938 |
| 5.3874 | 0.8263 | 1000 | 5.1214 | 50.9831 | 18.9709 | 34.9595 | 46.2721 | 79.3533 | 82.7398 | 81.0059 | 0.1449 | 231.4938 |
| 5.33 | 0.9089 | 1100 | 5.1074 | 51.1059 | 19.0707 | 35.0338 | 46.2997 | 79.4385 | 82.7671 | 81.0633 | 0.1456 | 231.4938 |
| 5.4559 | 0.9915 | 1200 | 5.0998 | 51.1109 | 19.0065 | 35.0665 | 46.3738 | 79.4711 | 82.7557 | 81.0748 | 0.1452 | 231.4938 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.2.1
- Tokenizers 0.19.1
|