camel / README.md
coding-groot's picture
Update README.md
b4add42 verified
---
license: gpl
---
# Counseling with CAMEL
### Setup
```
import argparse
import json
import multiprocessing
import re
import traceback
from abc import ABC, abstractmethod
from pathlib import Path
import requests
from langchain.prompts import PromptTemplate
from langchain_openai import OpenAI
```
### Define Agents
```
class Agent():
def __init__(self, vLLM_server, model_id):
self.llm = OpenAI(
temperature=0.0,
openai_api_key='EMPTY',
openai_api_base=vLLM_server,
max_tokens=512,
model=model_id
)
def generate(self):
pass
```
```
class CBTAgent(Agent):
def __init__(self, prompt, vLLM_server, model_id):
super().__init__(vLLM_server, model_id)
self.prompt_template = PromptTemplate(
input_variables=[
"client_information",
"reason_counseling",
'history',
],
template=prompt
)
def generate(self, client_information, reason, history):
history_text = '\n'.join(
[
f"{message['role'].capitalize()}: {message['message']}"
for message in history
]
)
prompt = self.prompt_template.format(
client_information=client_information,
reason_counseling=reason,
history= history_text
)
response = self.llm.invoke(prompt)
try:
cbt_technique = response.split("Counseling")[0].replace("\n", "")
except:
cbt_technique = None
try:
cbt_plan = response.split("Counseling planning:\n")[1].split("\nCBT")[0]
except:
cbt_plan = None
return cbt_technique, cbt_plan
```
```
class CounsleorAgent(Agent):
def __init__(self, prompt, vLLM_server, model_id, cbt_plan):
super().__init__(vLLM_server, model_id)
self.cbt_plan = cbt_plan
self.prompt_template = PromptTemplate(
input_variables=[
"client_information",
"reason_counseling",
"cbt_plan",
"history"
],
template=prompt
)
def generate(self, client_information, reason, history):
history_text = '\n'.join(
[
f"{message['role'].capitalize()}: {message['message']}"
for message in history
]
)
prompt = self.prompt_template.format(
client_information=client_information,
reason_counseling=reason,
cbt_plan=self.cbt_plan,
history=history_text,
)
# print(prompt)
response = self.llm.invoke(prompt)
# print(f"Response: {response}")
if "'message':" in response:
response = response.split("'message':")[1].split(", {")[0].replace("\"","").replace("]", "").replace("}", "")
return response.split("Counselor:")[-1].replace("\n", "").replace("\\", "").replace("\"","").strip()
```
### Define prompt templates
```
RESPONSE_PROMPT="""<|start_header_id|>system<|end_header_id|>
You are playing the role of a counselor in a psychological counseling session. Your task is to use the provided client information and counseling planning to generate the next counselor utterance in the dialogue. The goal is to create a natural and engaging response that builds on the previous conversation and aligns with the counseling plan.<|eot_id|><|start_header_id|>user<|end_header_id|>
Client Information:
{client_information}
Reason for seeking counseling:
{reason_counseling}
Counseling planning:
{cbt_plan}
Counseling Dialogue:
{history}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
"""
```
```
CBT_PLAN_PROMPT="""<|start_header_id|>system<|end_header_id|>
You are a counselor specializing in CBT techniques. Your task is to use the provided client information, and dialogue to generate an appropriate CBT technique and a detailed counseling plan.<|eot_id|><|start_header_id|>user<|end_header_id|>
Types of CBT Techniques:
Efficiency Evaluation, Pie Chart Technique, Alternative Perspective, Decatastrophizing, Pros and Cons Analysis, Evidence-Based Questioning, Reality Testing, Continuum Technique, Changing Rules to Wishes, Behavior Experiment, Problem-Solving Skills Training, Systematic Exposure
Client Information:
{client_information}
Reason for seeking counseling:
{reason_counseling}
Counseling Dialogue:
{history}
Choose an appropriate CBT technique and create a counseling plan based on that technique.<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
```
### Start!
```
def collect_info(name, age, gender, occupation, education, matrital_status, family_details, reason):
CLINET_INFO = f"""Name: {name}
Age: {age}
Gender: {gender}
Occupation: {occupation}
Education: {education}
Marital Status: {matrital_status}
Family Details: {family_details}"""
REASON_FOR_COUNSELING = reason
HISTORY_INIT = f"Counselor: Hi {name}, it's nice to meet you. How can I assist you today?\nClient: "
return CLINET_INFO, REASON_FOR_COUNSELING, HISTORY_INIT
def start_demo(intake_form, reason, history_init):
model_id = "DLI-Lab/camel"
vLLM_server = ```YOUR vLLM SERVER```
max_turns = 20
print("Welcome to the Multi-Turn ClientAgent Demo!\n")
print(f"[Intake Form]")
print(intake_form)
print("Type 'exit' to quit the demo.\n")
print("====== Counseling Session ======\n")
first_response = history_init.split('Counselor: ')[-1].split('\nClient')[0]
print(f"Counselor: {first_response}")
num_turn = 0
while num_turn < max_turns:
if num_turn == 0:
user_input = input("You (Client): ")
# print(f"You (Client): {user_input}")
history_init = history_init + user_input
history = [
{"role": "Counselor", "message": history_init.split("Counselor: ")[-1].split("\nClient")[0]},
{"role": "Client", "message": history_init.split("Client: ")[-1]}
]
# print("CBT Planning")
CBT_Planner = CBTAgent(CBT_PLAN_PROMPT, vLLM_server, model_id)
cbt_technique, cbt_plan = CBT_Planner.generate(intake_form, reason, history)
# print(f"CBT Technique: {cbt_technique}")
# print(f"CBT Plan: {cbt_plan}")
num_turn+=1
else:
counselor = CounsleorAgent(RESPONSE_PROMPT, vLLM_server, model_id, cbt_plan)
counselor_response = counselor.generate(intake_form, reason, history)
print(f"Counselor: {counselor_response}")
history.append({"role": "Counselor", "message": counselor_response})
user_input = input("You (Client): ")
if user_input.lower() == 'exit':
print("\n====== Exiting the demo. Goodbye! ======\n")
break
print(f"You (Client): {user_input}")
history.append({"role": "Client", "message": user_input})
num_turn+=1
print("Demo completed.")
return cbt_plan, history
## Example
# name = "Laura"
# age = "45"
# gender = "female"
# occupation = "Office Job"
# education = "College Graduate"
# matrital_status = "Single"
# family_details = "Lives alone"
name = input("Let's begin the pre-counseling session. What is your name? ")
age = input("How old are you? ")
gender = input("What is your gender? (e.g., Male, Female)")
occupation = input("What is your occupation? ")
education = input("What is your highest level of education? (e.g., College Graduate)")
marital_status = input("What is your marital status? (e.g., Single, Married)")
family_details = input("Can you briefly describe your family situation? (e.g., Lives alone)")
reason = input("What brings you here for counseling? Please explain briefly. ")
CLINET_INFO, REASON_FOR_COUNSELING, HISTORY_INIT = collect_info(name, age, gender, occupation, education, matrital_status, family_details, reason)
cbt_plan, history = start_demo(CLINET_INFO, REASON_FOR_COUNSELING, HISTORY_INIT)
print(f"CBT Plan: {cbt_plan}\n\n")
for message in history:
print(f"{message['role']}: {message['message']}")
```