coding-groot commited on
Commit
b4add42
·
verified ·
1 Parent(s): 8442795

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +249 -3
README.md CHANGED
@@ -1,3 +1,249 @@
1
- ---
2
- license: gpl
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: gpl
3
+ ---
4
+ # Counseling with CAMEL
5
+
6
+ ### Setup
7
+ ```
8
+ import argparse
9
+ import json
10
+ import multiprocessing
11
+ import re
12
+ import traceback
13
+ from abc import ABC, abstractmethod
14
+ from pathlib import Path
15
+
16
+ import requests
17
+ from langchain.prompts import PromptTemplate
18
+ from langchain_openai import OpenAI
19
+ ```
20
+
21
+ ### Define Agents
22
+ ```
23
+ class Agent():
24
+ def __init__(self, vLLM_server, model_id):
25
+ self.llm = OpenAI(
26
+ temperature=0.0,
27
+ openai_api_key='EMPTY',
28
+ openai_api_base=vLLM_server,
29
+ max_tokens=512,
30
+ model=model_id
31
+ )
32
+
33
+ def generate(self):
34
+ pass
35
+ ```
36
+
37
+ ```
38
+ class CBTAgent(Agent):
39
+ def __init__(self, prompt, vLLM_server, model_id):
40
+ super().__init__(vLLM_server, model_id)
41
+ self.prompt_template = PromptTemplate(
42
+ input_variables=[
43
+ "client_information",
44
+ "reason_counseling",
45
+ 'history',
46
+ ],
47
+ template=prompt
48
+ )
49
+
50
+ def generate(self, client_information, reason, history):
51
+ history_text = '\n'.join(
52
+ [
53
+ f"{message['role'].capitalize()}: {message['message']}"
54
+ for message in history
55
+ ]
56
+ )
57
+ prompt = self.prompt_template.format(
58
+ client_information=client_information,
59
+ reason_counseling=reason,
60
+ history= history_text
61
+ )
62
+ response = self.llm.invoke(prompt)
63
+
64
+ try:
65
+ cbt_technique = response.split("Counseling")[0].replace("\n", "")
66
+ except:
67
+ cbt_technique = None
68
+ try:
69
+ cbt_plan = response.split("Counseling planning:\n")[1].split("\nCBT")[0]
70
+ except:
71
+ cbt_plan = None
72
+
73
+ return cbt_technique, cbt_plan
74
+ ```
75
+
76
+ ```
77
+ class CounsleorAgent(Agent):
78
+ def __init__(self, prompt, vLLM_server, model_id, cbt_plan):
79
+ super().__init__(vLLM_server, model_id)
80
+ self.cbt_plan = cbt_plan
81
+ self.prompt_template = PromptTemplate(
82
+ input_variables=[
83
+ "client_information",
84
+ "reason_counseling",
85
+ "cbt_plan",
86
+ "history"
87
+ ],
88
+ template=prompt
89
+ )
90
+
91
+ def generate(self, client_information, reason, history):
92
+ history_text = '\n'.join(
93
+ [
94
+ f"{message['role'].capitalize()}: {message['message']}"
95
+ for message in history
96
+ ]
97
+ )
98
+ prompt = self.prompt_template.format(
99
+ client_information=client_information,
100
+ reason_counseling=reason,
101
+ cbt_plan=self.cbt_plan,
102
+ history=history_text,
103
+ )
104
+ # print(prompt)
105
+ response = self.llm.invoke(prompt)
106
+ # print(f"Response: {response}")
107
+
108
+ if "'message':" in response:
109
+ response = response.split("'message':")[1].split(", {")[0].replace("\"","").replace("]", "").replace("}", "")
110
+ return response.split("Counselor:")[-1].replace("\n", "").replace("\\", "").replace("\"","").strip()
111
+ ```
112
+
113
+ ### Define prompt templates
114
+ ```
115
+ RESPONSE_PROMPT="""<|start_header_id|>system<|end_header_id|>
116
+
117
+ You are playing the role of a counselor in a psychological counseling session. Your task is to use the provided client information and counseling planning to generate the next counselor utterance in the dialogue. The goal is to create a natural and engaging response that builds on the previous conversation and aligns with the counseling plan.<|eot_id|><|start_header_id|>user<|end_header_id|>
118
+
119
+ Client Information:
120
+ {client_information}
121
+
122
+ Reason for seeking counseling:
123
+ {reason_counseling}
124
+
125
+ Counseling planning:
126
+ {cbt_plan}
127
+
128
+ Counseling Dialogue:
129
+ {history}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
130
+
131
+ """
132
+ ```
133
+
134
+ ```
135
+ CBT_PLAN_PROMPT="""<|start_header_id|>system<|end_header_id|>
136
+
137
+ You are a counselor specializing in CBT techniques. Your task is to use the provided client information, and dialogue to generate an appropriate CBT technique and a detailed counseling plan.<|eot_id|><|start_header_id|>user<|end_header_id|>
138
+
139
+ Types of CBT Techniques:
140
+ Efficiency Evaluation, Pie Chart Technique, Alternative Perspective, Decatastrophizing, Pros and Cons Analysis, Evidence-Based Questioning, Reality Testing, Continuum Technique, Changing Rules to Wishes, Behavior Experiment, Problem-Solving Skills Training, Systematic Exposure
141
+
142
+ Client Information:
143
+ {client_information}
144
+
145
+ Reason for seeking counseling:
146
+ {reason_counseling}
147
+
148
+ Counseling Dialogue:
149
+ {history}
150
+
151
+ Choose an appropriate CBT technique and create a counseling plan based on that technique.<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
152
+ ```
153
+
154
+ ### Start!
155
+ ```
156
+ def collect_info(name, age, gender, occupation, education, matrital_status, family_details, reason):
157
+ CLINET_INFO = f"""Name: {name}
158
+ Age: {age}
159
+ Gender: {gender}
160
+ Occupation: {occupation}
161
+ Education: {education}
162
+ Marital Status: {matrital_status}
163
+ Family Details: {family_details}"""
164
+
165
+ REASON_FOR_COUNSELING = reason
166
+ HISTORY_INIT = f"Counselor: Hi {name}, it's nice to meet you. How can I assist you today?\nClient: "
167
+
168
+ return CLINET_INFO, REASON_FOR_COUNSELING, HISTORY_INIT
169
+
170
+ def start_demo(intake_form, reason, history_init):
171
+ model_id = "DLI-Lab/camel"
172
+ vLLM_server = ```YOUR vLLM SERVER```
173
+ max_turns = 20
174
+
175
+ print("Welcome to the Multi-Turn ClientAgent Demo!\n")
176
+ print(f"[Intake Form]")
177
+ print(intake_form)
178
+ print("Type 'exit' to quit the demo.\n")
179
+
180
+ print("====== Counseling Session ======\n")
181
+ first_response = history_init.split('Counselor: ')[-1].split('\nClient')[0]
182
+ print(f"Counselor: {first_response}")
183
+
184
+ num_turn = 0
185
+ while num_turn < max_turns:
186
+ if num_turn == 0:
187
+ user_input = input("You (Client): ")
188
+ # print(f"You (Client): {user_input}")
189
+ history_init = history_init + user_input
190
+ history = [
191
+ {"role": "Counselor", "message": history_init.split("Counselor: ")[-1].split("\nClient")[0]},
192
+ {"role": "Client", "message": history_init.split("Client: ")[-1]}
193
+ ]
194
+ # print("CBT Planning")
195
+ CBT_Planner = CBTAgent(CBT_PLAN_PROMPT, vLLM_server, model_id)
196
+ cbt_technique, cbt_plan = CBT_Planner.generate(intake_form, reason, history)
197
+ # print(f"CBT Technique: {cbt_technique}")
198
+ # print(f"CBT Plan: {cbt_plan}")
199
+
200
+ num_turn+=1
201
+ else:
202
+ counselor = CounsleorAgent(RESPONSE_PROMPT, vLLM_server, model_id, cbt_plan)
203
+ counselor_response = counselor.generate(intake_form, reason, history)
204
+ print(f"Counselor: {counselor_response}")
205
+
206
+ history.append({"role": "Counselor", "message": counselor_response})
207
+
208
+ user_input = input("You (Client): ")
209
+
210
+ if user_input.lower() == 'exit':
211
+ print("\n====== Exiting the demo. Goodbye! ======\n")
212
+ break
213
+
214
+ print(f"You (Client): {user_input}")
215
+ history.append({"role": "Client", "message": user_input})
216
+
217
+ num_turn+=1
218
+
219
+ print("Demo completed.")
220
+ return cbt_plan, history
221
+
222
+
223
+ ## Example
224
+ # name = "Laura"
225
+ # age = "45"
226
+ # gender = "female"
227
+ # occupation = "Office Job"
228
+ # education = "College Graduate"
229
+ # matrital_status = "Single"
230
+ # family_details = "Lives alone"
231
+
232
+ name = input("Let's begin the pre-counseling session. What is your name? ")
233
+ age = input("How old are you? ")
234
+ gender = input("What is your gender? (e.g., Male, Female)")
235
+ occupation = input("What is your occupation? ")
236
+ education = input("What is your highest level of education? (e.g., College Graduate)")
237
+ marital_status = input("What is your marital status? (e.g., Single, Married)")
238
+ family_details = input("Can you briefly describe your family situation? (e.g., Lives alone)")
239
+ reason = input("What brings you here for counseling? Please explain briefly. ")
240
+
241
+
242
+ CLINET_INFO, REASON_FOR_COUNSELING, HISTORY_INIT = collect_info(name, age, gender, occupation, education, matrital_status, family_details, reason)
243
+ cbt_plan, history = start_demo(CLINET_INFO, REASON_FOR_COUNSELING, HISTORY_INIT)
244
+
245
+ print(f"CBT Plan: {cbt_plan}\n\n")
246
+
247
+ for message in history:
248
+ print(f"{message['role']}: {message['message']}")
249
+ ```