coding-groot
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,249 @@
|
|
1 |
-
---
|
2 |
-
license: gpl
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: gpl
|
3 |
+
---
|
4 |
+
# Counseling with CAMEL
|
5 |
+
|
6 |
+
### Setup
|
7 |
+
```
|
8 |
+
import argparse
|
9 |
+
import json
|
10 |
+
import multiprocessing
|
11 |
+
import re
|
12 |
+
import traceback
|
13 |
+
from abc import ABC, abstractmethod
|
14 |
+
from pathlib import Path
|
15 |
+
|
16 |
+
import requests
|
17 |
+
from langchain.prompts import PromptTemplate
|
18 |
+
from langchain_openai import OpenAI
|
19 |
+
```
|
20 |
+
|
21 |
+
### Define Agents
|
22 |
+
```
|
23 |
+
class Agent():
|
24 |
+
def __init__(self, vLLM_server, model_id):
|
25 |
+
self.llm = OpenAI(
|
26 |
+
temperature=0.0,
|
27 |
+
openai_api_key='EMPTY',
|
28 |
+
openai_api_base=vLLM_server,
|
29 |
+
max_tokens=512,
|
30 |
+
model=model_id
|
31 |
+
)
|
32 |
+
|
33 |
+
def generate(self):
|
34 |
+
pass
|
35 |
+
```
|
36 |
+
|
37 |
+
```
|
38 |
+
class CBTAgent(Agent):
|
39 |
+
def __init__(self, prompt, vLLM_server, model_id):
|
40 |
+
super().__init__(vLLM_server, model_id)
|
41 |
+
self.prompt_template = PromptTemplate(
|
42 |
+
input_variables=[
|
43 |
+
"client_information",
|
44 |
+
"reason_counseling",
|
45 |
+
'history',
|
46 |
+
],
|
47 |
+
template=prompt
|
48 |
+
)
|
49 |
+
|
50 |
+
def generate(self, client_information, reason, history):
|
51 |
+
history_text = '\n'.join(
|
52 |
+
[
|
53 |
+
f"{message['role'].capitalize()}: {message['message']}"
|
54 |
+
for message in history
|
55 |
+
]
|
56 |
+
)
|
57 |
+
prompt = self.prompt_template.format(
|
58 |
+
client_information=client_information,
|
59 |
+
reason_counseling=reason,
|
60 |
+
history= history_text
|
61 |
+
)
|
62 |
+
response = self.llm.invoke(prompt)
|
63 |
+
|
64 |
+
try:
|
65 |
+
cbt_technique = response.split("Counseling")[0].replace("\n", "")
|
66 |
+
except:
|
67 |
+
cbt_technique = None
|
68 |
+
try:
|
69 |
+
cbt_plan = response.split("Counseling planning:\n")[1].split("\nCBT")[0]
|
70 |
+
except:
|
71 |
+
cbt_plan = None
|
72 |
+
|
73 |
+
return cbt_technique, cbt_plan
|
74 |
+
```
|
75 |
+
|
76 |
+
```
|
77 |
+
class CounsleorAgent(Agent):
|
78 |
+
def __init__(self, prompt, vLLM_server, model_id, cbt_plan):
|
79 |
+
super().__init__(vLLM_server, model_id)
|
80 |
+
self.cbt_plan = cbt_plan
|
81 |
+
self.prompt_template = PromptTemplate(
|
82 |
+
input_variables=[
|
83 |
+
"client_information",
|
84 |
+
"reason_counseling",
|
85 |
+
"cbt_plan",
|
86 |
+
"history"
|
87 |
+
],
|
88 |
+
template=prompt
|
89 |
+
)
|
90 |
+
|
91 |
+
def generate(self, client_information, reason, history):
|
92 |
+
history_text = '\n'.join(
|
93 |
+
[
|
94 |
+
f"{message['role'].capitalize()}: {message['message']}"
|
95 |
+
for message in history
|
96 |
+
]
|
97 |
+
)
|
98 |
+
prompt = self.prompt_template.format(
|
99 |
+
client_information=client_information,
|
100 |
+
reason_counseling=reason,
|
101 |
+
cbt_plan=self.cbt_plan,
|
102 |
+
history=history_text,
|
103 |
+
)
|
104 |
+
# print(prompt)
|
105 |
+
response = self.llm.invoke(prompt)
|
106 |
+
# print(f"Response: {response}")
|
107 |
+
|
108 |
+
if "'message':" in response:
|
109 |
+
response = response.split("'message':")[1].split(", {")[0].replace("\"","").replace("]", "").replace("}", "")
|
110 |
+
return response.split("Counselor:")[-1].replace("\n", "").replace("\\", "").replace("\"","").strip()
|
111 |
+
```
|
112 |
+
|
113 |
+
### Define prompt templates
|
114 |
+
```
|
115 |
+
RESPONSE_PROMPT="""<|start_header_id|>system<|end_header_id|>
|
116 |
+
|
117 |
+
You are playing the role of a counselor in a psychological counseling session. Your task is to use the provided client information and counseling planning to generate the next counselor utterance in the dialogue. The goal is to create a natural and engaging response that builds on the previous conversation and aligns with the counseling plan.<|eot_id|><|start_header_id|>user<|end_header_id|>
|
118 |
+
|
119 |
+
Client Information:
|
120 |
+
{client_information}
|
121 |
+
|
122 |
+
Reason for seeking counseling:
|
123 |
+
{reason_counseling}
|
124 |
+
|
125 |
+
Counseling planning:
|
126 |
+
{cbt_plan}
|
127 |
+
|
128 |
+
Counseling Dialogue:
|
129 |
+
{history}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
|
130 |
+
|
131 |
+
"""
|
132 |
+
```
|
133 |
+
|
134 |
+
```
|
135 |
+
CBT_PLAN_PROMPT="""<|start_header_id|>system<|end_header_id|>
|
136 |
+
|
137 |
+
You are a counselor specializing in CBT techniques. Your task is to use the provided client information, and dialogue to generate an appropriate CBT technique and a detailed counseling plan.<|eot_id|><|start_header_id|>user<|end_header_id|>
|
138 |
+
|
139 |
+
Types of CBT Techniques:
|
140 |
+
Efficiency Evaluation, Pie Chart Technique, Alternative Perspective, Decatastrophizing, Pros and Cons Analysis, Evidence-Based Questioning, Reality Testing, Continuum Technique, Changing Rules to Wishes, Behavior Experiment, Problem-Solving Skills Training, Systematic Exposure
|
141 |
+
|
142 |
+
Client Information:
|
143 |
+
{client_information}
|
144 |
+
|
145 |
+
Reason for seeking counseling:
|
146 |
+
{reason_counseling}
|
147 |
+
|
148 |
+
Counseling Dialogue:
|
149 |
+
{history}
|
150 |
+
|
151 |
+
Choose an appropriate CBT technique and create a counseling plan based on that technique.<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
|
152 |
+
```
|
153 |
+
|
154 |
+
### Start!
|
155 |
+
```
|
156 |
+
def collect_info(name, age, gender, occupation, education, matrital_status, family_details, reason):
|
157 |
+
CLINET_INFO = f"""Name: {name}
|
158 |
+
Age: {age}
|
159 |
+
Gender: {gender}
|
160 |
+
Occupation: {occupation}
|
161 |
+
Education: {education}
|
162 |
+
Marital Status: {matrital_status}
|
163 |
+
Family Details: {family_details}"""
|
164 |
+
|
165 |
+
REASON_FOR_COUNSELING = reason
|
166 |
+
HISTORY_INIT = f"Counselor: Hi {name}, it's nice to meet you. How can I assist you today?\nClient: "
|
167 |
+
|
168 |
+
return CLINET_INFO, REASON_FOR_COUNSELING, HISTORY_INIT
|
169 |
+
|
170 |
+
def start_demo(intake_form, reason, history_init):
|
171 |
+
model_id = "DLI-Lab/camel"
|
172 |
+
vLLM_server = ```YOUR vLLM SERVER```
|
173 |
+
max_turns = 20
|
174 |
+
|
175 |
+
print("Welcome to the Multi-Turn ClientAgent Demo!\n")
|
176 |
+
print(f"[Intake Form]")
|
177 |
+
print(intake_form)
|
178 |
+
print("Type 'exit' to quit the demo.\n")
|
179 |
+
|
180 |
+
print("====== Counseling Session ======\n")
|
181 |
+
first_response = history_init.split('Counselor: ')[-1].split('\nClient')[0]
|
182 |
+
print(f"Counselor: {first_response}")
|
183 |
+
|
184 |
+
num_turn = 0
|
185 |
+
while num_turn < max_turns:
|
186 |
+
if num_turn == 0:
|
187 |
+
user_input = input("You (Client): ")
|
188 |
+
# print(f"You (Client): {user_input}")
|
189 |
+
history_init = history_init + user_input
|
190 |
+
history = [
|
191 |
+
{"role": "Counselor", "message": history_init.split("Counselor: ")[-1].split("\nClient")[0]},
|
192 |
+
{"role": "Client", "message": history_init.split("Client: ")[-1]}
|
193 |
+
]
|
194 |
+
# print("CBT Planning")
|
195 |
+
CBT_Planner = CBTAgent(CBT_PLAN_PROMPT, vLLM_server, model_id)
|
196 |
+
cbt_technique, cbt_plan = CBT_Planner.generate(intake_form, reason, history)
|
197 |
+
# print(f"CBT Technique: {cbt_technique}")
|
198 |
+
# print(f"CBT Plan: {cbt_plan}")
|
199 |
+
|
200 |
+
num_turn+=1
|
201 |
+
else:
|
202 |
+
counselor = CounsleorAgent(RESPONSE_PROMPT, vLLM_server, model_id, cbt_plan)
|
203 |
+
counselor_response = counselor.generate(intake_form, reason, history)
|
204 |
+
print(f"Counselor: {counselor_response}")
|
205 |
+
|
206 |
+
history.append({"role": "Counselor", "message": counselor_response})
|
207 |
+
|
208 |
+
user_input = input("You (Client): ")
|
209 |
+
|
210 |
+
if user_input.lower() == 'exit':
|
211 |
+
print("\n====== Exiting the demo. Goodbye! ======\n")
|
212 |
+
break
|
213 |
+
|
214 |
+
print(f"You (Client): {user_input}")
|
215 |
+
history.append({"role": "Client", "message": user_input})
|
216 |
+
|
217 |
+
num_turn+=1
|
218 |
+
|
219 |
+
print("Demo completed.")
|
220 |
+
return cbt_plan, history
|
221 |
+
|
222 |
+
|
223 |
+
## Example
|
224 |
+
# name = "Laura"
|
225 |
+
# age = "45"
|
226 |
+
# gender = "female"
|
227 |
+
# occupation = "Office Job"
|
228 |
+
# education = "College Graduate"
|
229 |
+
# matrital_status = "Single"
|
230 |
+
# family_details = "Lives alone"
|
231 |
+
|
232 |
+
name = input("Let's begin the pre-counseling session. What is your name? ")
|
233 |
+
age = input("How old are you? ")
|
234 |
+
gender = input("What is your gender? (e.g., Male, Female)")
|
235 |
+
occupation = input("What is your occupation? ")
|
236 |
+
education = input("What is your highest level of education? (e.g., College Graduate)")
|
237 |
+
marital_status = input("What is your marital status? (e.g., Single, Married)")
|
238 |
+
family_details = input("Can you briefly describe your family situation? (e.g., Lives alone)")
|
239 |
+
reason = input("What brings you here for counseling? Please explain briefly. ")
|
240 |
+
|
241 |
+
|
242 |
+
CLINET_INFO, REASON_FOR_COUNSELING, HISTORY_INIT = collect_info(name, age, gender, occupation, education, matrital_status, family_details, reason)
|
243 |
+
cbt_plan, history = start_demo(CLINET_INFO, REASON_FOR_COUNSELING, HISTORY_INIT)
|
244 |
+
|
245 |
+
print(f"CBT Plan: {cbt_plan}\n\n")
|
246 |
+
|
247 |
+
for message in history:
|
248 |
+
print(f"{message['role']}: {message['message']}")
|
249 |
+
```
|