|
--- |
|
base_model: finiteautomata/bertweet-base-sentiment-analysis |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: my_awesome_model_IMDB |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# my_awesome_model_IMDB |
|
|
|
This model is a fine-tuned version of [finiteautomata/bertweet-base-sentiment-analysis](https://huggingface.co/finiteautomata/bertweet-base-sentiment-analysis) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6664 |
|
- Accuracy: 0.8949 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.3261 | 1.0 | 782 | 0.2674 | 0.8903 | |
|
| 0.2072 | 2.0 | 1564 | 0.3035 | 0.8820 | |
|
| 0.1408 | 3.0 | 2346 | 0.3532 | 0.8967 | |
|
| 0.0876 | 4.0 | 3128 | 0.4793 | 0.8922 | |
|
| 0.0661 | 5.0 | 3910 | 0.4755 | 0.8925 | |
|
| 0.0373 | 6.0 | 4692 | 0.5159 | 0.8937 | |
|
| 0.034 | 7.0 | 5474 | 0.5527 | 0.8923 | |
|
| 0.0264 | 8.0 | 6256 | 0.6391 | 0.8947 | |
|
| 0.0179 | 9.0 | 7038 | 0.6491 | 0.8942 | |
|
| 0.0094 | 10.0 | 7820 | 0.6664 | 0.8949 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.14.0 |
|
|