File size: 1,995 Bytes
ee9e627 d7f2292 ee9e627 d7f2292 ee9e627 d7f2292 ee9e627 cb52349 ee9e627 cb52349 ee9e627 d7f2292 ee9e627 cb52349 ee9e627 cb52349 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
base_model: finiteautomata/bertweet-base-sentiment-analysis
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: my_awesome_model_IMDB
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_model_IMDB
This model is a fine-tuned version of [finiteautomata/bertweet-base-sentiment-analysis](https://huggingface.co/finiteautomata/bertweet-base-sentiment-analysis) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6664
- Accuracy: 0.8949
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3261 | 1.0 | 782 | 0.2674 | 0.8903 |
| 0.2072 | 2.0 | 1564 | 0.3035 | 0.8820 |
| 0.1408 | 3.0 | 2346 | 0.3532 | 0.8967 |
| 0.0876 | 4.0 | 3128 | 0.4793 | 0.8922 |
| 0.0661 | 5.0 | 3910 | 0.4755 | 0.8925 |
| 0.0373 | 6.0 | 4692 | 0.5159 | 0.8937 |
| 0.034 | 7.0 | 5474 | 0.5527 | 0.8923 |
| 0.0264 | 8.0 | 6256 | 0.6391 | 0.8947 |
| 0.0179 | 9.0 | 7038 | 0.6491 | 0.8942 |
| 0.0094 | 10.0 | 7820 | 0.6664 | 0.8949 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu117
- Datasets 2.17.0
- Tokenizers 0.14.0
|