Kevincp560's picture
update model card README.md
abecc80
|
raw
history blame
2.35 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - pub_med_summarization_dataset
metrics:
  - rouge
model-index:
  - name: wikihow-t5-small-finetuned-pubmed
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: pub_med_summarization_dataset
          type: pub_med_summarization_dataset
          args: document
        metrics:
          - name: Rouge1
            type: rouge
            value: 8.9619

wikihow-t5-small-finetuned-pubmed

This model is a fine-tuned version of deep-learning-analytics/wikihow-t5-small on the pub_med_summarization_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2702
  • Rouge1: 8.9619
  • Rouge2: 3.2719
  • Rougel: 8.1558
  • Rougelsum: 8.5714
  • Gen Len: 19.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
2.5984 1.0 4000 2.3696 10.237 3.8609 8.9776 9.677 19.0
2.5677 2.0 8000 2.3132 9.302 3.4499 8.3816 8.8831 19.0
2.5038 3.0 12000 2.2884 9.0578 3.3103 8.23 8.6723 19.0
2.4762 4.0 16000 2.2758 9.0001 3.2882 8.1845 8.6084 19.0
2.4393 5.0 20000 2.2702 8.9619 3.2719 8.1558 8.5714 19.0

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.10.0+cu111
  • Datasets 1.18.3
  • Tokenizers 0.11.6