Kevincp560 commited on
Commit
abecc80
·
1 Parent(s): 0bc5343

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - pub_med_summarization_dataset
6
+ metrics:
7
+ - rouge
8
+ model-index:
9
+ - name: wikihow-t5-small-finetuned-pubmed
10
+ results:
11
+ - task:
12
+ name: Sequence-to-sequence Language Modeling
13
+ type: text2text-generation
14
+ dataset:
15
+ name: pub_med_summarization_dataset
16
+ type: pub_med_summarization_dataset
17
+ args: document
18
+ metrics:
19
+ - name: Rouge1
20
+ type: rouge
21
+ value: 8.9619
22
+ ---
23
+
24
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
25
+ should probably proofread and complete it, then remove this comment. -->
26
+
27
+ # wikihow-t5-small-finetuned-pubmed
28
+
29
+ This model is a fine-tuned version of [deep-learning-analytics/wikihow-t5-small](https://huggingface.co/deep-learning-analytics/wikihow-t5-small) on the pub_med_summarization_dataset dataset.
30
+ It achieves the following results on the evaluation set:
31
+ - Loss: 2.2702
32
+ - Rouge1: 8.9619
33
+ - Rouge2: 3.2719
34
+ - Rougel: 8.1558
35
+ - Rougelsum: 8.5714
36
+ - Gen Len: 19.0
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 2e-05
56
+ - train_batch_size: 2
57
+ - eval_batch_size: 2
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - num_epochs: 5
62
+ - mixed_precision_training: Native AMP
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
67
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
68
+ | 2.5984 | 1.0 | 4000 | 2.3696 | 10.237 | 3.8609 | 8.9776 | 9.677 | 19.0 |
69
+ | 2.5677 | 2.0 | 8000 | 2.3132 | 9.302 | 3.4499 | 8.3816 | 8.8831 | 19.0 |
70
+ | 2.5038 | 3.0 | 12000 | 2.2884 | 9.0578 | 3.3103 | 8.23 | 8.6723 | 19.0 |
71
+ | 2.4762 | 4.0 | 16000 | 2.2758 | 9.0001 | 3.2882 | 8.1845 | 8.6084 | 19.0 |
72
+ | 2.4393 | 5.0 | 20000 | 2.2702 | 8.9619 | 3.2719 | 8.1558 | 8.5714 | 19.0 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.17.0
78
+ - Pytorch 1.10.0+cu111
79
+ - Datasets 1.18.3
80
+ - Tokenizers 0.11.6