RuT5SumGazeta
Model description
This is the model for abstractive summarization for Russian based on rut5-base.
Intended uses & limitations
How to use
Colab: link
from transformers import AutoTokenizer, T5ForConditionalGeneration
model_name = "IlyaGusev/rut5_base_sum_gazeta"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
article_text = "..."
input_ids = tokenizer(
[article_text],
max_length=600,
add_special_tokens=True,
padding="max_length",
truncation=True,
return_tensors="pt"
)["input_ids"]
output_ids = model.generate(
input_ids=input_ids,
no_repeat_ngram_size=4
)[0]
summary = tokenizer.decode(output_ids, skip_special_tokens=True)
print(summary)
Training data
- Dataset: Gazeta
Training procedure
- Training script: train.py
- Config: t5_training_config.json
Eval results
- Train dataset: Gazeta v1 train
- Test dataset: Gazeta v1 test
- Source max_length: 600
- Target max_length: 200
- no_repeat_ngram_size: 4
- num_beams: 5
Model | R-1-f | R-2-f | R-L-f | chrF | METEOR | BLEU | Avg char length |
---|---|---|---|---|---|---|---|
mbart_ru_sum_gazeta | 32.4 | 14.3 | 28.0 | 39.7 | 26.4 | 12.1 | 371 |
rut5_base_sum_gazeta | 32.2 | 14.4 | 28.1 | 39.8 | 25.7 | 12.3 | 330 |
rugpt3medium_sum_gazeta | 26.2 | 7.7 | 21.7 | 33.8 | 18.2 | 4.3 | 244 |
- Train dataset: Gazeta v1 train
- Test dataset: Gazeta v2 test
- Source max_length: 600
- Target max_length: 200
- no_repeat_ngram_size: 4
- num_beams: 5
Model | R-1-f | R-2-f | R-L-f | chrF | METEOR | BLEU | Avg char length |
---|---|---|---|---|---|---|---|
mbart_ru_sum_gazeta | 28.7 | 11.1 | 24.4 | 37.3 | 22.7 | 9.4 | 373 |
rut5_base_sum_gazeta | 28.6 | 11.1 | 24.5 | 37.2 | 22.0 | 9.4 | 331 |
rugpt3medium_sum_gazeta | 24.1 | 6.5 | 19.8 | 32.1 | 16.3 | 3.6 | 242 |
Predicting all summaries:
import json
import torch
from transformers import AutoTokenizer, T5ForConditionalGeneration
from datasets import load_dataset
def gen_batch(inputs, batch_size):
batch_start = 0
while batch_start < len(inputs):
yield inputs[batch_start: batch_start + batch_size]
batch_start += batch_size
def predict(
model_name,
input_records,
output_file,
max_source_tokens_count=600,
batch_size=8
):
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name).to(device)
predictions = []
for batch in gen_batch(input_records, batch_size):
texts = [r["text"] for r in batch]
input_ids = tokenizer(
texts,
add_special_tokens=True,
max_length=max_source_tokens_count,
padding="max_length",
truncation=True,
return_tensors="pt"
)["input_ids"].to(device)
output_ids = model.generate(
input_ids=input_ids,
no_repeat_ngram_size=4
)
summaries = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
for s in summaries:
print(s)
predictions.extend(summaries)
with open(output_file, "w") as w:
for p in predictions:
w.write(p.strip().replace("\n", " ") + "\n")
gazeta_test = load_dataset('IlyaGusev/gazeta', script_version="v1.0")["test"]
predict("IlyaGusev/rut5_base_sum_gazeta", list(gazeta_test), "t5_predictions.txt")
Evaluation script: evaluate.py
Flags: --language ru --tokenize-after --lower
- Downloads last month
- 1,753
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.