MBARTRuSumGazeta

Model description

This is a ported version of fairseq model.

For more details, please see Dataset for Automatic Summarization of Russian News.

Intended uses & limitations

How to use

Colab: link

from transformers import MBartTokenizer, MBartForConditionalGeneration

model_name = "IlyaGusev/mbart_ru_sum_gazeta"
tokenizer = MBartTokenizer.from_pretrained(model_name)
model = MBartForConditionalGeneration.from_pretrained(model_name)

article_text = "..."

input_ids = tokenizer(
    [article_text],
    max_length=600,
    padding="max_length",
    truncation=True,
    return_tensors="pt",
)["input_ids"]

output_ids = model.generate(
    input_ids=input_ids,
    no_repeat_ngram_size=4
)[0]

summary = tokenizer.decode(output_ids, skip_special_tokens=True)
print(summary)

Limitations and bias

  • The model should work well with Gazeta.ru articles, but for any other agencies it can suffer from domain shift

Training data

Training procedure

Eval results

  • Train dataset: Gazeta v1 train
  • Test dataset: Gazeta v1 test
  • Source max_length: 600
  • Target max_length: 200
  • no_repeat_ngram_size: 4
  • num_beams: 5
Model R-1-f R-2-f R-L-f chrF METEOR BLEU Avg char length
mbart_ru_sum_gazeta 32.4 14.3 28.0 39.7 26.4 12.1 371
rut5_base_sum_gazeta 32.2 14.4 28.1 39.8 25.7 12.3 330
rugpt3medium_sum_gazeta 26.2 7.7 21.7 33.8 18.2 4.3 244
  • Train dataset: Gazeta v1 train
  • Test dataset: Gazeta v2 test
  • Source max_length: 600
  • Target max_length: 200
  • no_repeat_ngram_size: 4
  • num_beams: 5
Model R-1-f R-2-f R-L-f chrF METEOR BLEU Avg char length
mbart_ru_sum_gazeta 28.7 11.1 24.4 37.3 22.7 9.4 373
rut5_base_sum_gazeta 28.6 11.1 24.5 37.2 22.0 9.4 331
rugpt3medium_sum_gazeta 24.1 6.5 19.8 32.1 16.3 3.6 242

Predicting all summaries:

import json
import torch
from transformers import MBartTokenizer, MBartForConditionalGeneration
from datasets import load_dataset


def gen_batch(inputs, batch_size):
    batch_start = 0
    while batch_start < len(inputs):
        yield inputs[batch_start: batch_start + batch_size]
        batch_start += batch_size


def predict(
    model_name,
    input_records,
    output_file,
    max_source_tokens_count=600,
    batch_size=4
):
    device = "cuda" if torch.cuda.is_available() else "cpu"
    
    tokenizer = MBartTokenizer.from_pretrained(model_name)
    model = MBartForConditionalGeneration.from_pretrained(model_name).to(device)
    
    predictions = []
    for batch in gen_batch(inputs, batch_size):
        texts = [r["text"] for r in batch]
        input_ids = tokenizer(
            batch,
            return_tensors="pt",
            padding="max_length",
            truncation=True,
            max_length=max_source_tokens_count
        )["input_ids"].to(device)
        
        output_ids = model.generate(
            input_ids=input_ids,
            no_repeat_ngram_size=4
        )
        summaries = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
        for s in summaries:
            print(s)
        predictions.extend(summaries)
    with open(output_file, "w") as w:
        for p in predictions:
            w.write(p.strip().replace("\n", " ") + "\n")

gazeta_test = load_dataset('IlyaGusev/gazeta', script_version="v1.0")["test"]
predict("IlyaGusev/mbart_ru_sum_gazeta", list(gazeta_test), "mbart_predictions.txt")

Evaluation: https://github.com/IlyaGusev/summarus/blob/master/evaluate.py

Flags: --language ru --tokenize-after --lower

BibTeX entry and citation info

@InProceedings{10.1007/978-3-030-59082-6_9,
    author="Gusev, Ilya",
    editor="Filchenkov, Andrey and Kauttonen, Janne and Pivovarova, Lidia",
    title="Dataset for Automatic Summarization of Russian News",
    booktitle="Artificial Intelligence and Natural Language",
    year="2020",
    publisher="Springer International Publishing",
    address="Cham",
    pages="122--134",
    isbn="978-3-030-59082-6"
}
Downloads last month
10,209
Safetensors
Model size
867M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train IlyaGusev/mbart_ru_sum_gazeta

Spaces using IlyaGusev/mbart_ru_sum_gazeta 5