FrinzTheCoder's picture
FrinzTheCoder/bert-base-multilingual-cased-tir
01277ee verified
metadata
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-multilingual-cased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: bert-base-multilingual-cased-tir
    results: []

bert-base-multilingual-cased-tir

This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1424
  • Accuracy: 0.6520
  • F1 Binary: 0.3654
  • Precision: 0.2527
  • Recall: 0.6592

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 64
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 55
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Binary Precision Recall
No log 1.0 276 0.1520 0.7999 0.3719 0.3555 0.3899
0.1423 2.0 552 0.1383 0.7499 0.3835 0.3066 0.5119
0.1423 3.0 828 0.1401 0.7763 0.3807 0.3286 0.4524
0.1303 4.0 1104 0.1424 0.6520 0.3654 0.2527 0.6592

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0