File size: 2,039 Bytes
66ebda8
 
 
01277ee
66ebda8
 
 
 
01277ee
 
66ebda8
 
 
 
 
 
 
 
 
 
01277ee
66ebda8
01277ee
 
 
 
 
66ebda8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01277ee
66ebda8
 
 
01277ee
66ebda8
01277ee
66ebda8
 
 
 
01277ee
 
 
 
 
 
66ebda8
 
 
 
01277ee
 
66ebda8
01277ee
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-multilingual-cased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
model-index:
- name: bert-base-multilingual-cased-tir
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-multilingual-cased-tir

This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1424
- Accuracy: 0.6520
- F1 Binary: 0.3654
- Precision: 0.2527
- Recall: 0.6592

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 55
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Binary | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:---------:|:------:|
| No log        | 1.0   | 276  | 0.1520          | 0.7999   | 0.3719    | 0.3555    | 0.3899 |
| 0.1423        | 2.0   | 552  | 0.1383          | 0.7499   | 0.3835    | 0.3066    | 0.5119 |
| 0.1423        | 3.0   | 828  | 0.1401          | 0.7763   | 0.3807    | 0.3286    | 0.4524 |
| 0.1303        | 4.0   | 1104 | 0.1424          | 0.6520   | 0.3654    | 0.2527    | 0.6592 |


### Framework versions

- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0