File size: 2,039 Bytes
66ebda8 01277ee 66ebda8 01277ee 66ebda8 01277ee 66ebda8 01277ee 66ebda8 01277ee 66ebda8 01277ee 66ebda8 01277ee 66ebda8 01277ee 66ebda8 01277ee 66ebda8 01277ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-multilingual-cased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
model-index:
- name: bert-base-multilingual-cased-tir
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-multilingual-cased-tir
This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1424
- Accuracy: 0.6520
- F1 Binary: 0.3654
- Precision: 0.2527
- Recall: 0.6592
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 55
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Binary | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:---------:|:------:|
| No log | 1.0 | 276 | 0.1520 | 0.7999 | 0.3719 | 0.3555 | 0.3899 |
| 0.1423 | 2.0 | 552 | 0.1383 | 0.7499 | 0.3835 | 0.3066 | 0.5119 |
| 0.1423 | 3.0 | 828 | 0.1401 | 0.7763 | 0.3807 | 0.3286 | 0.4524 |
| 0.1303 | 4.0 | 1104 | 0.1424 | 0.6520 | 0.3654 | 0.2527 | 0.6592 |
### Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
|