metadata
license: apache-2.0
tags:
- image-classification
- generated_from_trainer
datasets:
- beans
metrics:
- accuracy
widget:
- src: https://huggingface.co/EugenioRoma/vit_model/resolve/main/healthy.jpeg
example_title: Healthy
- src: https://huggingface.co/EugenioRoma/vit_model/resolve/main/bean_rust.jpeg
example_title: Bean Rust
model-index:
- name: vit_model
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: beans
type: beans
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9849624060150376
vit_model
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the beans dataset. It achieves the following results on the evaluation set:
- Loss: 0.0855
- Accuracy: 0.9850
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.134 | 3.85 | 500 | 0.0855 | 0.9850 |
Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.2