--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - beans metrics: - accuracy widget: - src: >- https://huggingface.co/EugenioRoma/vit_model/resolve/main/healthy.jpeg example_title: Healthy - src: >- https://huggingface.co/EugenioRoma/vit_model/resolve/main/bean_rust.jpeg example_title: Bean Rust model-index: - name: vit_model results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9849624060150376 --- # vit_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0855 - Accuracy: 0.9850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.134 | 3.85 | 500 | 0.0855 | 0.9850 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.2