DrishtiSharma's picture
Update README.md
b4766b6
|
raw
history blame
2.33 kB
metadata
language:
  - sat
license: apache-2.0
tags:
  - automatic-speech-recognition
  - mozilla-foundation/common_voice_8_0
  - generated_from_trainer
  - sat
  - robust-speech-event
  - model_for_talk
datasets:
  - common_voice
model-index:
  - name: wav2vec2-large-xls-r-300m-sat-final
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 8
          type: mozilla-foundation/common_voice_8_0
          args: sat
        metrics:
          - name: Test WER
            type: wer
            value: 0.3493975903614458
          - name: Test CER
            type: cer
            value: 0.13773314203730272

wav2vec2-large-xls-r-300m-sat-final

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8012
  • Wer: 0.3815

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 170
  • num_epochs: 200
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
10.6317 33.29 100 2.8629 1.0
2.047 66.57 200 0.9516 0.5703
0.4475 99.86 300 0.8539 0.3896
0.0716 133.29 400 0.8277 0.3454
0.047 166.57 500 0.7597 0.3655
0.0249 199.86 600 0.8012 0.3815

Framework versions

  • Transformers 4.16.2
  • Pytorch 1.10.0+cu111
  • Datasets 1.18.3
  • Tokenizers 0.11.0