wav2vec2-large-xls-r-300m-sat-final

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SAT dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8012
  • Wer: 0.3815

Evaluation Commands

  1. To evaluate on mozilla-foundation/common_voice_8_0 with test split

python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sat-final --dataset mozilla-foundation/common_voice_8_0 --config sat --split test --log_outputs

  1. To evaluate on speech-recognition-community-v2/dev_data

python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sat-final --dataset speech-recognition-community-v2/dev_data --config sat --split validation --chunk_length_s 10 --stride_length_s 1

Note: Santali (Ol Chiki) language not found in speech-recognition-community-v2/dev_data

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 170
  • num_epochs: 200
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
10.6317 33.29 100 2.8629 1.0
2.047 66.57 200 0.9516 0.5703
0.4475 99.86 300 0.8539 0.3896
0.0716 133.29 400 0.8277 0.3454
0.047 166.57 500 0.7597 0.3655
0.0249 199.86 600 0.8012 0.3815

Framework versions

  • Transformers 4.16.2
  • Pytorch 1.10.0+cu111
  • Datasets 1.18.3
  • Tokenizers 0.11.0
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train DrishtiSharma/wav2vec2-large-xls-r-300m-sat-final

Evaluation results