|
--- |
|
language: |
|
- sat |
|
license: apache-2.0 |
|
tags: |
|
- automatic-speech-recognition |
|
- mozilla-foundation/common_voice_8_0 |
|
- generated_from_trainer |
|
- sat |
|
- robust-speech-event |
|
- model_for_talk |
|
- hf-asr-leaderboard |
|
datasets: |
|
- mozilla-foundation/common_voice_8_0 |
|
model-index: |
|
- name: wav2vec2-large-xls-r-300m-sat-a3 |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 8 |
|
type: mozilla-foundation/common_voice_8_0 |
|
args: sat |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 0.357429718875502 |
|
- name: Test CER |
|
type: cer |
|
value: 0.14203730272596843 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Robust Speech Event - Dev Data |
|
type: speech-recognition-community-v2/dev_data |
|
args: sat |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: NA |
|
- name: Test CER |
|
type: cer |
|
value: NA |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-large-xls-r-300m-sat-a3 |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SAT dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8961 |
|
- Wer: 0.3976 |
|
|
|
### Evaluation Commands |
|
|
|
1. To evaluate on mozilla-foundation/common_voice_8_0 with test split |
|
|
|
python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sat-a3 --dataset mozilla-foundation/common_voice_8_0 --config sat --split test --log_outputs |
|
|
|
2. To evaluate on speech-recognition-community-v2/dev_data |
|
|
|
Note: Santali (Ol Chiki) language not found in speech-recognition-community-v2/dev_data |
|
|
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0004 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 200 |
|
- num_epochs: 200 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:------:| |
|
| 11.1266 | 33.29 | 100 | 2.8577 | 1.0 | |
|
| 2.1549 | 66.57 | 200 | 1.0799 | 0.5542 | |
|
| 0.5628 | 99.86 | 300 | 0.7973 | 0.4016 | |
|
| 0.0779 | 133.29 | 400 | 0.8424 | 0.4177 | |
|
| 0.0404 | 166.57 | 500 | 0.9048 | 0.4137 | |
|
| 0.0212 | 199.86 | 600 | 0.8961 | 0.3976 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.16.2 |
|
- Pytorch 1.10.0+cu111 |
|
- Datasets 1.18.3 |
|
- Tokenizers 0.11.0 |
|
|