anton-l's picture
anton-l HF staff
Upload README.md
37c5eec
metadata
language:
  - sat
license: apache-2.0
tags:
  - automatic-speech-recognition
  - mozilla-foundation/common_voice_8_0
  - generated_from_trainer
  - sat
  - robust-speech-event
  - model_for_talk
  - hf-asr-leaderboard
datasets:
  - mozilla-foundation/common_voice_8_0
model-index:
  - name: wav2vec2-large-xls-r-300m-sat-a3
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 8
          type: mozilla-foundation/common_voice_8_0
          args: sat
        metrics:
          - name: Test WER
            type: wer
            value: 0.357429718875502
          - name: Test CER
            type: cer
            value: 0.14203730272596843
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Robust Speech Event - Dev Data
          type: speech-recognition-community-v2/dev_data
          args: sat
        metrics:
          - name: Test WER
            type: wer
            value: NA
          - name: Test CER
            type: cer
            value: NA

wav2vec2-large-xls-r-300m-sat-a3

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SAT dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8961
  • Wer: 0.3976

Evaluation Commands

  1. To evaluate on mozilla-foundation/common_voice_8_0 with test split

python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sat-a3 --dataset mozilla-foundation/common_voice_8_0 --config sat --split test --log_outputs

  1. To evaluate on speech-recognition-community-v2/dev_data

Note: Santali (Ol Chiki) language not found in speech-recognition-community-v2/dev_data

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 200
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
11.1266 33.29 100 2.8577 1.0
2.1549 66.57 200 1.0799 0.5542
0.5628 99.86 300 0.7973 0.4016
0.0779 133.29 400 0.8424 0.4177
0.0404 166.57 500 0.9048 0.4137
0.0212 199.86 600 0.8961 0.3976

Framework versions

  • Transformers 4.16.2
  • Pytorch 1.10.0+cu111
  • Datasets 1.18.3
  • Tokenizers 0.11.0