ggbetz's picture
Update README.md
1eee035 verified
metadata
license: llama3.1
datasets:
  - DebateLabKIT/deepa2-conversations
  - DebateLabKIT/deep-argmap-conversations
  - allenai/tulu-3-sft-mixture
base_model:
  - meta-llama/Llama-3.1-8B-Instruct
pipeline_tag: text-generation
library_name: transformers
tags:
  - logic
  - argumentation
  - critical-thinking
  - argument-mapping
  - trl
  - sft
model-index:
  - name: Llama-3.1-Argunaut-1-8B-SFT
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: wis-k/instruction-following-eval
          split: train
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 55.19
            name: averaged accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=DebateLabKIT%2FLlama-3.1-Argunaut-1-8B-SFT
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: SaylorTwift/bbh
          split: test
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 27.19
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=DebateLabKIT%2FLlama-3.1-Argunaut-1-8B-SFT
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: lighteval/MATH-Hard
          split: test
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 11.18
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=DebateLabKIT%2FLlama-3.1-Argunaut-1-8B-SFT
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          split: train
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 4.47
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=DebateLabKIT%2FLlama-3.1-Argunaut-1-8B-SFT
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 15.85
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=DebateLabKIT%2FLlama-3.1-Argunaut-1-8B-SFT
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 27.47
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=DebateLabKIT%2FLlama-3.1-Argunaut-1-8B-SFT
          name: Open LLM Leaderboard

Model Card for Llama-3.1-Argunaut-1-8B-SFT

This model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct. It has been trained using TRL.

Quick start

from transformers import pipeline

question = "Are you familiar with Argdown syntax? What's its purpose?"
generator = pipeline("text-generation", model="DebateLabKIT/Llama-3.1-Argunaut-1-8B-SFT", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])

Evals

⚠️ NOTE: These self-reported results have been obtained with lm-eval-harness and using local-completions api; they deviate significantly from the official Open LLM Leaderboard evals, which are also reported at the end of this readme.

LM Eval Harness results (local completions/vllm): wandb report

Model BBH MATH GPQA MMLU Pro
Llama-3.1-Argunaut-1-8B-SFT 44.6% 9.0% 32.1% 34.5%

SFT dataset mixture

Dataset Weight (examples) Weight (tokens)
DebateLabKIT/deepa2-conversations 25% 49%
DebateLabKIT/deep-argmap-conversations 25% 18%
allenai/tulu-3-sft-mixture 50% 33%

Training procedure

Trained with SFT on 1M examples and for 1 epoch with

  • context length 8196
  • packing (trl implementation)
  • spectrum (top 30 percent)
# Training parameters
num_train_epochs: 1
per_device_train_batch_size: 8
gradient_accumulation_steps: 2
gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
learning_rate: 5.0e-6  # following _Tülu 3_ recipe
lr_scheduler_type: cosine
warmup_ratio: 0.1

Hardware: 2 x H100 GPUs.

This work was performed on the HoreKa supercomputer funded by the Ministry of Science, Research and the Arts Baden-Württemberg and by the Federal Ministry of Education and Research.

Framework versions

  • TRL: 0.12.1
  • Transformers: 4.46.3
  • Pytorch: 2.4.1
  • Datasets: 3.1.0
  • Tokenizers: 0.20.3

Credits

This work wouldn't be possible without all the great contributions from the open LLM community. Thank you! Special kudos go to

Open LLM Leaderboard Evaluation Results

Detailed results can be found here! Summarized results can be found here!

Metric Value (%)
Average 23.56
IFEval (0-Shot) 55.19
BBH (3-Shot) 27.19
MATH Lvl 5 (4-Shot) 11.18
GPQA (0-shot) 4.47
MuSR (0-shot) 15.85
MMLU-PRO (5-shot) 27.47