File size: 6,591 Bytes
e1d7970
 
fadf077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e30a90f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3484ab6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73286d4
 
1eee035
c91dc28
2878a09
c91dc28
e9d7396
e4eee79
2878a09
c91dc28
73286d4
16954e7
3484ab6
c91dc28
3484ab6
f3e7417
 
 
3484ab6
16954e7
 
 
e43841a
 
 
 
 
3484ab6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73286d4
 
 
3484ab6
 
 
 
 
 
 
 
73286d4
 
 
 
 
 
 
 
 
 
e30a90f
1eee035
e30a90f
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
---
license: llama3.1
datasets:
- DebateLabKIT/deepa2-conversations
- DebateLabKIT/deep-argmap-conversations
- allenai/tulu-3-sft-mixture
base_model:
- meta-llama/Llama-3.1-8B-Instruct
pipeline_tag: text-generation
library_name: transformers
tags:
- logic
- argumentation
- critical-thinking
- argument-mapping
- trl
- sft
model-index:
- name: Llama-3.1-Argunaut-1-8B-SFT
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: wis-k/instruction-following-eval
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 55.19
      name: averaged accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=DebateLabKIT%2FLlama-3.1-Argunaut-1-8B-SFT
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: SaylorTwift/bbh
      split: test
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 27.19
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=DebateLabKIT%2FLlama-3.1-Argunaut-1-8B-SFT
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: lighteval/MATH-Hard
      split: test
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 11.18
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=DebateLabKIT%2FLlama-3.1-Argunaut-1-8B-SFT
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 4.47
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=DebateLabKIT%2FLlama-3.1-Argunaut-1-8B-SFT
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 15.85
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=DebateLabKIT%2FLlama-3.1-Argunaut-1-8B-SFT
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 27.47
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=DebateLabKIT%2FLlama-3.1-Argunaut-1-8B-SFT
      name: Open LLM Leaderboard
---


# Model Card for Llama-3.1-Argunaut-1-8B-SFT

This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).

## Quick start

```python
from transformers import pipeline

question = "Are you familiar with Argdown syntax? What's its purpose?"
generator = pipeline("text-generation", model="DebateLabKIT/Llama-3.1-Argunaut-1-8B-SFT", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```

## Evals

**⚠️ NOTE**: These self-reported results have been obtained with lm-eval-harness and using local-completions api; they deviate significantly from the official [Open LLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/) evals, which are also reported at the end of this readme.

LM Eval Harness results (local completions/vllm): [wandb report](https://api.wandb.ai/links/ggbetz/3bwr0ou6)

|Model|BBH|MATH|GPQA|MMLU Pro|
|:--------|:---:|:---:|:---:|:---:|
| Llama-3.1-Argunaut-1-8B-SFT | 44.6% | 9.0% | 32.1% | 34.5% | 


## SFT dataset mixture

|Dataset|Weight (examples)|Weight (tokens)|
|:------|:----:|:----:|
|DebateLabKIT/deepa2-conversations|25%|49%|
|DebateLabKIT/deep-argmap-conversations|25%|18%|
|allenai/tulu-3-sft-mixture|50%|33%|


## Training procedure

Trained with SFT on **1M examples** and for 1 epoch with 

* context length 8196
* packing (trl implementation)
* *spectrum* (top 30 percent)

```yaml
# Training parameters
num_train_epochs: 1
per_device_train_batch_size: 8
gradient_accumulation_steps: 2
gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
learning_rate: 5.0e-6  # following _Tülu 3_ recipe
lr_scheduler_type: cosine
warmup_ratio: 0.1
```

Hardware: 2 x H100 GPUs.

_This work was performed on the HoreKa supercomputer funded by the
Ministry of Science, Research and the Arts Baden-Württemberg and by
the Federal Ministry of Education and Research._

### Framework versions

- TRL: 0.12.1
- Transformers: 4.46.3
- Pytorch: 2.4.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3

## Credits 

This work wouldn't be possible without all the **great contributions from the open LLM community**. Thank you! Special kudos go to 

- @philschmid for his latest [fine-tuning boilerplate](https://www.philschmid.de/fine-tune-llms-in-2025)
- @lvwerra, @lewtun et al for building and maintaining [trl](https://github.com/huggingface/trl)
- @cognitivecomputations for sharing [spectrum](https://github.com/cognitivecomputations/spectrum/tree/main)



## [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/DebateLabKIT__Llama-3.1-Argunaut-1-8B-SFT-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=DebateLabKIT%2FLlama-3.1-Argunaut-1-8B-SFT&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!

|      Metric       |Value (%)|
|-------------------|--------:|
|**Average**        |    23.56|
|IFEval (0-Shot)    |    55.19|
|BBH (3-Shot)       |    27.19|
|MATH Lvl 5 (4-Shot)|    11.18|
|GPQA (0-shot)      |     4.47|
|MuSR (0-shot)      |    15.85|
|MMLU-PRO (5-shot)  |    27.47|